Изобретение относится к анализу физико-химических свойств материалов, а именно пористой структуры и сорбционных свойств разнообразных объектов, таких как мембраны, катализаторы, сорбенты, фильтры, электроды, породы, почвы, ткани, кожи, строительные материалы и др., и может быть использовано в тех областях науки и техники, где они применяются.
Известен способ анализа пористой структуры путем определения изотерм сорбции паров жидкостей в равновесных статических условиях [1]. Способ основан на определении количества адсорбата в образце путем взвешивания на весах. Давление паров над анализируемым образцом (Р) создают за счет испарения из ампулы с адсорбатом и определяют с помощью манометров по ходу увеличения или уменьшения давления, выдерживая каждую точку до установления равновесия между адсорбатом в образце и его паром над образцом.
Данный способ имеет широкое распространение, так как позволяет непосредственно измерять адсорбцию и давление паров адсорбата. Его основным недостатком является длительность проведения измерений, достигающая нескольких дней, а иногда и больше. Это объясняется необходимостью поддерживать равновесие жидкость/пар между малым объемом адсорбата в ограниченном по массе и объему анализируемом образце и большим объемом пара в коммуникациях измерительной установки, удаленных от образца на значительное расстояние.
Известен способ анализа пористой структуры путем определения изотерм сорбции паров непрерывной десорбцией их в динамических условиях [2] (аналог). Способ основан на постоянном вытеснении предварительно адсорбированного пара неадсорбируемым газом-носителем, содержащим адсорбат, относительное давление которого в смеси изменяется от P/P0 до 0. Изменение концентрации адсорбата в потоке регистрируют двумя детекторами по теплопроводности, между которыми находится трубка с анализируемым образцом. По разнице концентраций адсорбата после и до образца рассчитывают количество адсорбата, десорбированного с образца в единицу времени, а затем в течение всей десорбции. Такой недостаточно точный кумулятивный косвенный метод определения количеств адсорбата в образце является недостатком данного способа.
Известен способ анализа пористой структуры путем измерения адсорбции паров в динамических условиях [3] (прототип), осуществляемого периодическим взвешиванием ячейки с анализируемым образцом по ходу адсорбции или десорбции адсорбата из потока смеси газа-носителя с парами адсорбата. Давление паров адсорбата в ячейке с образцом контролируют изменением скорости потока чистого газа-носителя, разбавляющего в смесителе поток того же газа, насыщенного парами адсорбата в специальном испарителе при температуре опыта. Способ позволяет получать при атмосферном давлении без использования сложного оборудования изотермы сорбции, хорошо согласующиеся с изотермами, получаемыми самым распространенным статическим способом на высоковакуумной установке.
Недостатком данного способа является необходимость многократного периодического взвешивания ячейки с образцом и сложность регулирования и контроля относительного давления паров адсорбата, для чего необходимо помимо температуры контролировать скорости потоков чистого и насыщенного газа-носителя, а также барометрическое давление и гидравлическое сопротивление системы.
Задачей изобретения является расширение арсенала способов анализа пористой структуры.
Указанная задача достигается тем, что в способе анализа пористой структуры, включающем измерение количества адсорбата внутри анализируемого образца путем взвешивания и определение равновесного относительного давления паров адсорбата в ячейке с образцом, относительное давление пара определяют путем измерения скорости отвода паров из ячейки без нарушения квазиравновесного состояния между адсорбатом в образце и его паром в ячейке.
В соответствии с изобретением измерение изотермы десорбции производят следующим образом. Предварительно насыщенный адсорбатом анализируемый образец с некоторым избытком жидкости помещают в специальную ячейку, имеющую отводное отверстие (трубку), позволяющее отводить пары адсорбата с ограниченной скоростью, определяемой типом адсорбата, температурой, геометрией отводного устройства и концентрацией (давлением) паров адсорбата на выходе из ячейки. Ячейку размещают на термостатируемых весах и выдерживают с целью термостатирования. Далее производят измерение кривой сушки (десорбции), т.е. зависимости массы адсорбата в анализируемом образце от времени по мере испарения адсорбата из ячейки. При этом процесс отвода паров производят со скоростью заведомо меньшей, чем скорость десорбции адсорбата с поверхности образца в объем ячейки, чтобы поддерживать внутри ячейки квазиравновесное состояние между адсорбатом в образце и его паром. Для упрощения дальнейших расчетов концентрацию паров на выходе из ячейки поддерживают равной нулю путем обдува потоком осушенного газа.
В указанных выше условиях проведения измерения скорость отвода паров адсорбата пропорциональна концентрации (давлению) его паров в ячейке и выполняется условие тождественного равенства текущих значений относительного давления паров адсорбата в ячейке отношению текущих значений скорости отвода паров к максимальной скорости, соответствующей давлению насыщения при температуре опыта (при этом абсолютное значение давления насыщения (P0) в общем случае измерять нет необходимости).
Массу адсорбата в анализируемом образце определяют из кривой сушки (десорбции), а по ее производной по времени - скорость отвода и соответственно относительное давление паров адсорбата, строят искомую изотерму десорбции. Далее из измеренной изотермы с помощью уравнения Кельвина или других известных методик расчета находят распределение пор по радиусам и другие параметры пористой структуры анализируемого образца.
Пример 1. Для реализации предложенного способа используют электронные аналитические весы А-120 S, помещенные в воздушный термостат. На весах размещают металлическую ячейку цилиндрической формы, имеющую крышку с отверстием, в котором закрепляют отводные трубки разной длины и диаметра. Вблизи наружного края отводной трубки размещают сопло для подачи осушенного азота из баллона. В качестве адсорбата используют гептан.
На фиг. 1 приведена измеренная по примеру 1 изотерма десорбции гептана для неорганической мембраны из карбида кремния. На фиг.2 приведено полученное по примеру 1 из изотермы десорбции гептана дифференциальное распределение объемов пор по логарифму радиусов мембраны из карбида кремния.
Пример 2. По примеру 1, но в качестве адсорбата используют изопропиловый спирт. На фиг. 3 приведены интегральные и дифференциальные распределения объемов пор по радиусам селективного слоя ультрафильтрационных полиамидных мембран РА-100 в исходном состоянии и после их модификации радиационной прививкой N,N-диэтилакриламидом.
Достоинством предложенного способа является возможность варьирования адсорбатов в широких пределах изменения давления их паров, что повышает информативность способа. Кроме того, способ позволяет анализировать образцы с малой пористостью при использовании больших навесок образца, а также анализировать тонкослойные образцы с малым объемом пор на единицу внешней поверхности за счет возможности анализа большой площади образца единовременно.
Источники информации
1. Экспериментальные методы в адсорбции и молекулярной хроматографии. Под ред. А.В.Киселева, В.П.Древинга. Изд-во МГУ, 1973, c. 108.
2. Пористая структура катализаторов и процессы переноса в гетерогенном катализе. Под ред. Г.К.Борескова. Изд-во "Наука", Новосибирск, 1970, c. 183.
3. А.М.Рубинштейн, В.А.Афанасьев. Использование динамического метода измерения адсорбции паров для определения величины поверхности катализаторов, Изв. АН СССР ОХН, 1956, N 1, c.1294-1303.
название | год | авторы | номер документа |
---|---|---|---|
ПОРОМЕР | 1995 |
|
RU2097742C1 |
СПОСОБ МОДИФИКАЦИИ АСИММЕТРИЧНОЙ МЕМБРАНЫ ИЗ ПОЛИВИНИЛТРИМЕТИЛСИЛАНА | 1991 |
|
RU2012394C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ИЗОТЕРМ СОРБЦИИ ГАЗОВ И ПАРОВ В МЕМБРАННЫХ МАТЕРИАЛАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2013 |
|
RU2567402C2 |
Способ определения коэффициентов диффузии и проницаемости газов в полимерных мембранах и устройство для его осуществления | 1984 |
|
SU1144493A1 |
СЕНСОР ПАРОВ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ | 1997 |
|
RU2119662C1 |
СПОСОБ КАЧЕСТВЕННОЙ ОЦЕНКИ СОРБЦИОННЫХ СВОЙСТВ ЗОЛОШЛАКОВЫХ МАТЕРИАЛОВ ПО ОТНОШЕНИЮ К ПАРАМ АЗОТНОЙ КИСЛОТЫ | 2012 |
|
RU2532172C2 |
НЕПОДВИЖНАЯ ФАЗА ДЛЯ КАПИЛЛЯРНОЙ ГАЗОВОЙ ХРОМАТОГРАФИИ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 1991 |
|
RU2018822C1 |
СПОСОБ ПОЛУЧЕНИЯ СШИТОГО ПОЛИ-2-ГИДРОКСИЭТИЛМЕТАКРИЛАТА | 1992 |
|
RU2026306C1 |
МЕМБРАННЫЙ ЭЛЕМЕНТ РЕАКТОРА ДЛЯ ГИДРИРОВАНИЯ | 1994 |
|
RU2106194C1 |
СПОСОБ МОДИФИКАЦИИ ГАЗОРАЗДЕЛИТЕЛЬНЫХ МЕМБРАН | 1993 |
|
RU2072890C1 |
Изобретение относится к анализу физико-механических свойств материалов, а именно пористой структуры и сорбционных свойств разнообразных объектов, таких как мембраны, катализаторы, сорбенты, фильтры, электроды, породы, почвы, ткани, кожи, строительные материалы и др., и может быть использовано в тех областях науки и техники, где они применяются. Способ анализа пористой структуры включает измерение количества адсорбата внутри анализируемого образца путем взвешивания и определение равновесного относительно давления адсорбата в ячейке с образцом посредством измерения скорости отвода паров из ячейки без нарушения квазиравновесного состояния между адсорбатом в образце и его паром в ячейке. Способ позволяет менять адсорбаты в широких пределах изменения давления их паров. Это повышает информативность способа. 3 ил.
Способ анализа пористой структуры, включающий измерение количества адсорбата внутри анализируемого образца путем взвешивания и определение равновесного относительного давления паров адсорбата в ячейке с образцом, отличающийся тем, что относительное давление паров определяют путем измерения скорости отвода паров из ячейки без нарушения квазиравновесного состояния между адсорбатом в образце и его паром в ячейке.
Рубинштейн А.М | |||
и др | |||
Использование динамического метода измерения адсорбции паров для определения величины поверхности катализаторов, Изв | |||
АН СССР ОХН, 1956, N 1, с | |||
Приспособление для уменьшения потерь теплоты в двигателях | 1924 |
|
SU1294A1 |
ПОРОМЕР | 1995 |
|
RU2097742C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ УДЕЛЬНОЙ ПОВЕРХНОСТИ ТВЕРДЫХ МАТЕРИАЛОВ | 1990 |
|
RU2045033C1 |
RU 2056041 C1, 10.03.96 | |||
US 4627273 A, 09.12.86 | |||
ШПАЛООПРАВОЧНЫЙ СТАНОК | 0 |
|
SU280811A1 |
Варочный аппарат | 1947 |
|
SU70404A1 |
Авторы
Даты
1999-11-20—Публикация
1998-04-17—Подача