ИЗВЕСТКОВО-МАГНЕЗИАЛЬНЫЙ ФЛЮС Российский патент 2000 года по МПК C21C5/36 C21C5/54 

Описание патента на изобретение RU2145357C1

Изобретение относится к области металлургии, в частности к флюсам для сталеплавильного производства.

Известен шлакообразующий реагент (1), содержащий больше 15% MgO, который получают из магнезита или доломита путем добавления 5-20% цемента, увлажнения (4-30%) и прессования брикетов размером 1-30 мм.

Недостатком шлакообразующего реагента является его высокая влажность, вследствие чего ограничивается применение этого флюса при производстве стали. Недостатком также является высокая температура плавления материала.

Наиболее близким по технической сущности к достигаемому результату является шлам для рафинирования сталей и сплавов (2), который содержит (мас. %): CaO - 25-35, MgO - 12-25, Al2O3 - 15-30, SiO2 - 8-20, NiO - 0,1-2,8, Fe2O3 - 0,1-4,0, K2F - 5-20.

Недостатком вышеуказанной шламовой смеси является невозможность ее использования непосредственно в сталеплавильной плавке (конвертер, мартен, электропечь) для шлакообразования вследствие высокого содержания в ней оксидов кремния, никеля и низких концентраций оксидов железа. Присутствие в этой смеси высокого содержания оксидов кремния ухудшает шлакообразование сталеплавильной плавки вследствие образования двух- или трехкальциевых силикатов, что затрудняет растворение извести, а наличие оксидов никеля ограничивает сортамент выплавляемых марок сталей вследствие восстановления никеля из шлака в металл. Кроме этого, заявленный шлак для рафинирования сталей и сплавов (2) имеет начальную температуру плавления 1640oC.

Задачей изобретения является создание состава флюса, обладающего низкой температурой плавления и высокой реакционной способностью его растворения в сталеплавильных шлаковых расплавах.

Поставленная задача достигается тем, что известный флюс, содержащий оксиды кальция, магния, алюминия, железа и кремния, согласно изобретению содержит указанные оксиды при следующем соотношении компонентов (мас.%):
оксиды магния 26,0 - 35,0
оксиды алюминия 0,3 - 7,0
оксиды железа 5,0 - 15,0
оксиды кремния 0,5 - 7,0
оксиды кальция остальное
При низком содержании во флюсе оксидов кремния и высоком содержании оксидов железа в присутствии значительного количества оксидов кальция и магния образуются легкоплавкие шпинели, такие как магноферрит (MgOFe2O3), феррит кальция (CaOFe2O3) и шпинель (MgOAl2O3), имеющие низкие температуры плавления. Несмотря на то, что флюс содержит оксиды алюминия, и в результате этого могут образовываться тугоплавкие соединения 3CaOAl2O3 и CaO2Al2O3, присутствие во флюсе оксидов железа, являющихся плавнем для оксидов алюминия, делает образование этих тугоплавких соединений маловероятным. Таким образом, заявляемый состав флюса, в результате образования в нем легкоплавких соединений оксидов, обладает низкой температурой плавления.

Ввод в состав флюса оксидов алюминия позволяет повысить активность оксидов железа, поэтому, наряду с низкой температурой плавления, скорость растворения флюса в шлаковом расплаве увеличивается.

Учитывая, что футеровка современных сталеплавильных агрегатов (конвертер, электропечь) состоит из магнезиальных огнеупоров, с целью снижения их расхода сталеплавильные шлаки должны содержать необходимое количество оксидов магния, находящееся в равновесии с оксидами магния в огнеупорах. С этой целью во флюс введено значительное количество оксидов магния.

Количество оксидов магния во флюсе определяется полученным содержанием оксидов магния в шлаке, после дачи флюса в сталеплавильный агрегат.

Так, например, при использовании флюса в конвертерной плавке содержание оксидов магния в шлаке должно быть не менее 7,0%, в случае использования углеродмагнезитовой футеровки. Поэтому, если содержание оксидов магния во флюсе будет менее 26,0%, то для получения в шлаке 7,0% оксидов магния приходится вводить значительное количество флюса, что отрицательно сказывается на теплосодержании конвертерной плавки. Если содержание оксидов магния будет превышать 35,0%, то флюс становится хрупким и при перегрузках раскалывается вследствие образования значительного количества твердой фазы чистой окиси магния.

Увеличение во флюсе оксидов алюминия в количестве более 7,0% приводит к повышенному содержанию в нем тугоплавких алюминатов кальция, в результате чего повышается температура плавления флюса. Если флюс будет содержать оксидов алюминия менее 0,3%, то понизится скорость растворения флюса в шлаковом расплаве вследствие малого влияния оксидов алюминия на активность оксидов железа.

Увеличение содержания во флюсе оксидов железа более 15% приводит к повышению оксидов железа в шлаке, которые агрессивно воздействуют на футеровку сталеплавильного агрегата. При снижении содержания оксидов железа во флюсе менее 5,0% увеличивается температура плавления флюса вследствие снижения количества образующихся ферритов.

Если содержание оксидов кремния во флюсе будет превышать 7,0%, то будет образовываться значительное количество силикатов кальция и магния, что приведет к увеличению температуры плавления флюса, а также к снижению растворения флюса в шлаковом расплаве. В случае снижения содержания во флюсе оксидов кремния менее 0,5%, при введении его в шлак повысится вязкость шлака вследствие получения высокой основности, что отрицательно сказывается на стойкости магнезиальных огнеупоров.

Новизна заявляемого известково-магнезиального флюса обусловлена отсутствием в литературе составов флюса, содержащих оксиды магния совместно с оксидами железа в заявляемых пределах.

Ввод в состав флюса высоких концентраций оксидов магния и кальция, составляющих в сумме в среднем 80% с показателями низкой температуры плавления и высокой скорости растворения флюса в шлаковом расплаве, определяет неочевидность заявляемого состава известково-магнезиального флюса.

Пример использования известково-магнезиального флюса в конвертерной плавке.

В опытный конвертер с магнезиальной футеровкой заливали 200 кг чугуна при температуре 1400-1460oC состава, %: C - 4,0-4,2; SiO2 - 0,7; Mn - 0,2-0,28; S - 0,025-0,031; P - 0,06-0,09. После заливки чугуна в конвертер вводили 6 кг известково-магнезиального флюса, опустили фурму и начали продувку чугуна кислородом. По окончании продувки металл имел температуру 1620-1670oC и содержал, (%): C - 0,10-0,12; Mn - 0,06-0,12; S - 0,016-0,018; P - 0,009-0,012. В процессе продувки чугуна определяли момент образования шлака. После слива металла из конвертера замеряли толщину футеровки. Результаты испытаний флюса представлены в таблице.

Из представленной таблицы видно, что заявляемый известково-магнезиальный флюс по сравнению с прототипом имеет низкую температуру плавления и высокую прочность, а использование его в конвертерной плавке быстро образует шлаковый расплав и не оказывает влияния на разрушение магнезиальных огнеупоров кладки конвертера.

Источники информации
1. Пат. США N 4451293. Заявлено 23.04.82. Опубликовано 29.05.84. МКИ C 22 C B 9/10.

2. Авт. Свидетельство СССР N 1036760. Заявлено 05.05.82. Опубликовано в Б.И., 1983, N 31, МКИ C 21 C 5/54.

Похожие патенты RU2145357C1

название год авторы номер документа
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 2000
  • Чумаков С.М.
  • Демидов К.Н.
  • Клочай В.В.
  • Смирнов Л.А.
  • Луканин Ю.В.
  • Пляка В.П.
  • Зинченко С.Д.
  • Орлов Е.П.
  • Филатов М.В.
  • Кузнецов С.И.
  • Мильбергер Т.Г.
  • Школьник Я.Ш.
  • Кобелев В.А.
  • Потанин В.Н.
  • Возчиков А.П.
RU2164952C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 2001
  • Демидов К.Н.
  • Смирнов Л.А.
  • Филатов М.В.
  • Пляка В.П.
  • Зинченко С.Д.
  • Загорулько В.П.
  • Горшков С.П.
  • Кузнецов С.И.
  • Шагалов А.Б.
  • Школьник Я.Ш.
  • Лятин А.Б.
  • Возчиков А.П.
RU2196181C1
СТАЛЕПЛАВИЛЬНЫЙ ВЫСОКОМАГНЕЗИАЛЬНЫЙ ФЛЮС И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) 2012
  • Демидов Константин Николаевич
  • Смирнов Леонид Андреевич
  • Третьяков Сергей Тихонович
  • Возчиков Андрей Петрович
  • Борисова Татьяна Викторовна
  • Хлыстов Сергей Павлович
  • Кривых Людмила Юрьевна
RU2524878C2
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 2000
  • Демидов К.Н.
  • Кузовков А.Я.
  • Смирнов Л.А.
  • Ильин В.И.
  • Данилин Ю.А.
  • Зажигаев П.А.
  • Кузнецов С.И.
  • Школьник Я.Ш.
  • Возчиков А.П.
RU2194079C2
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 2005
  • Демидов Константин Николаевич
  • Борисова Татьяна Викторовна
  • Смирнов Леонид Андреевич
  • Терентьев Александр Евгеньевич
  • Кузнецов Сергей Исаакович
  • Терентьев Евгений Александрович
  • Возчиков Андрей Петрович
RU2288958C1
ВЫСОКОМАГНЕЗИАЛЬНЫЙ ФЛЮС 2004
  • Гаврилюк Виктор Павлович
  • Неволин Виталий Михайлович
RU2278168C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 2008
  • Демидов Константин Николаевич
  • Филатов Михаил Васильевич
  • Смирнов Денис Евгеньевич
  • Зинченко Сергей Дмитриевич
  • Лятин Андрей Борисович
  • Кузнецов Сергей Исаакович
  • Моисеев Андрей Анатольевич
  • Борисова Татьяна Викторовна
  • Возчиков Андрей Петрович
RU2387717C2
СПОСОБ ПОЛУЧЕНИЯ ИЗВЕСТКОВО-МАГНЕЗИАЛЬНОГО АГЛОМЕРАТА ДЛЯ СТАЛЕПЛАВИЛЬНОГО ПРОИЗВОДСТВА 2011
  • Табаков Михаил Степанович
  • Ерошкин Сергей Борисович
  • Гуркин Михаил Андреевич
  • Кашкаров Евгений Анатольевич
  • Сафронов Александр Юрьевич
  • Яремчук Сергей Александрович
  • Деткова Татьяна Викторовна
  • Невраев Вениамин Павлович
  • Нестеров Александр Станиславович
  • Якушев Владимир Сергеевич
RU2460812C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 2005
  • Шагалов Анатолий Борисович
  • Демидов Константин Николаевич
  • Зинченко Сергей Дмитриевич
  • Филатов Михаил Васильевич
  • Ерошкин Сергей Борисович
  • Лятин Андрей Борисович
  • Кузнецов Сергей Исаакович
  • Смирнов Денис Евгеньевич
RU2289629C1
Способ получения высокомагнезиального флюса-модификатора для сталеплавильных шлаков 2018
  • Богданов Вячеслав Александрович
  • Ушаков Евгений Борисович
RU2739494C2

Иллюстрации к изобретению RU 2 145 357 C1

Реферат патента 2000 года ИЗВЕСТКОВО-МАГНЕЗИАЛЬНЫЙ ФЛЮС

Изобретение относится к области металлургии, в частности к флюсам для сталеплавильного производства. Желаемый технический результат - создание флюса, обладающего низкой температурой плавления и высокой реакционной способностью его растворения в сталеплавильных шлаковых расплавах. Известково-магнезиальный флюс содержит, мас.%: 26,0 - 35,0 оксидов магния, 0,3 - 7,0 оксидов алюминия, 5,0 - 15,0 оксидов железа, 0,5 - 7,0 оксидов кремния и остальное - оксиды кальция. 1 табл.

Формула изобретения RU 2 145 357 C1

Известково-магнезиальный флюс, содержащий оксиды кальция, магния, алюминия, железа, и кремния, отличающийся тем, что он содержит указанные оксиды при следующем соотношении компонентов, мас.%:
Оксиды магния - 26,0 - 35,0
Оксиды алюминия - 0,3 - 7,0
Оксиды железа - 5,0 - 15,0
Оксиды кремния - 0,5 - 7,0
Оксиды кальция - Остальное

Документы, цитированные в отчете о поиске Патент 2000 года RU2145357C1

Способ получения металлургического флюса 1986
  • Терзиян Павел Григорьевич
  • Терзиян Сергей Павлович
  • Щукина Любовь Федоровна
  • Рычка Инна Михайловна
SU1401053A1
Шихта для получения комплексного флюса конвертерной плавки 1983
  • Хайдуков Владислав Павлович
  • Соколов Геннадий Анисимович
  • Зубарев Алексей Григорьевич
  • Сергеев Александр Георгиевич
  • Матвеев Дмитрий Евгеньевич
  • Пономарев Владимир Николаевич
  • Карпенко Елена Владиславовна
SU1257099A1
Шлак для рафинирования сталей и сплавов 1982
  • Тулин Николай Алексеевич
  • Каблуковский Анатолий Федорович
  • Шувалов Михаил Дмитриевич
  • Бреус Валентин Михайлович
  • Дедюкин Александр Аркадьевич
  • Максутов Рашат Фасхеевич
  • Чернышев Евгений Яковлевич
  • Пегов Владимир Григорьевич
  • Сенюшкин Леонид Иванович
  • Любимов Владимир Николаевич
  • Морозов Василий Петрович
  • Левинзон Вениамин Хаймович
SU1036760A1
Шлакообразующая смесь 1988
  • Филимонов Сергей Григорьевич
  • Заславский Абрам Яковлевич
  • Милюц Валерий Григорьевич
  • Скрыль Валерий Федорович
SU1585342A1
SU 1123294 A, 20.03.96
МАТЕРИАЛ ДЛЯ РАФИНИРОВАНИЯ ЖИДКИХ СПЛАВОВ НА ОСНОВЕ ЖЕЛЕЗА 1993
  • Травин О.В.
  • Паршин С.И.
  • Шумский Н.Я.
  • Мазуров Е.Ф.
  • Камалов А.Р.
RU2061058C1
ФЛЮС ДЛЯ ОСНОВНОГО СТАЛЕПЛАВИЛЬНОГО ПРОИЗВОДСТВА 1993
  • Цымбал Виктор Павлович[Kz]
  • Герман Виктор Иванович[Kz]
  • Лаукарт Владимир Егорович[Kz]
  • Асилов Шингисхан Сайдаханович[Kz]
RU2094473C1
RU 94003582 A1, 20.10.95
ТЕРМОТОПЛИВНЫЙ РЕГУЛЯТОР 1991
  • Корнюшин Александр Николаевич
RU2027058C1
JP, 60-245717A, 05.12.85
Способ получения на волокне оливково-зеленой окраски путем образования никелевого лака азокрасителя 1920
  • Ворожцов Н.Н.
SU57A1

RU 2 145 357 C1

Авторы

Демидов К.Н.

Чумаков С.М.

Смирнов Л.А.

Алексеев Б.А.

Филатов Н.В.

Буксеев В.В.

Пляка В.П.

Филатов М.В.

Зинченко С.Д.

Кузнецов С.И.

Школьник Я.Ш.

Кобелев В.А.

Потанин В.Н.

Возчиков А.П.

Шагалов А.Б.

Даты

2000-02-10Публикация

1999-01-27Подача