СПОСОБ ЗАКАЛКИ В ИНЕРТНЫХ ГАЗАХ Российский патент 2001 года по МПК C21D1/74 F27B5/04 

Описание патента на изобретение RU2164247C1

Изобретение относится к области машиностроения и может использоваться при термообработке, преимущественно закалке, деталей из конструктивных и инструментальных легированных сталей с критической скоростью закалки не более 30 град/с.

Светлая или чистая закалка широко применяется в практике машиностроения. При этом в качестве атмосферы при нагреве часто применяют инертные газы аргон, реже - гелий. Более универсальным является применение этих газов одновременно и как атмосферы при нагревании, и как закалочные среды. По такой технологии в аргоне могут закаливаться довольно массивные штампы, детали пресс-форм из высоколегированных сталей, например, Х12М, 30Х13 (Л.П. Карпов. Применение инертных газов для светлой закалки легированных сталей // МиТОМ, 1968, N 8, с. 2-3) или некрупные детали из среднелегированных сталей ХВГ, Х6БФ - в гелии (МиТОМ, 1968, N 8). Сдерживающим фактором широкого применения такой закалки является низкая теплопроводность аргона (0,745 относительно воздуха), а значит и низкая скорость закалки, или высокая стоимость гелия при его большой теплопроводности (6,217 по воздуху).

Известен способ термообработки в вакууме, включающий нагрев детали до температуры аустенизации и охлаждение со скоростью выше критической в газовой среде гелия, аргона и водорода (РЖ Металлургия, N 8, 1967, реферат 8И643), который принят за прототип.

Задача изобретения: расширить возможность применения инертных газов аргона и гелия для светлой закалки стальных деталей.

Поставленная задача достигается применением смеси инертных газов аргона и гелия состава 20% гелия, остальное аргон.

Общие признаки с прототипом - применяются газы аргон и гелий. Отличительные признаки - вместо отдельных газов применяют смесь газов аргона и гелия в соотношении 20% гелия и 80% аргона.

Для реализации способа выполняют операции:
1. Подготавливают два баллона сжатого газа, один с аргоном (ГОСТ 10157-79), другой - с гелием (ТУ51-689-75) необходимого сорта по содержанию примесей кислорода и влаги.

2. Подготавливают систему подачи газов в герметичный муфель печи через ротаметры.

3. Нагревают детали с защитой от окисления для их аустенизации перед закалкой.

4. Охлаждают детали в смеси аргона и гелия, контролируя расход газов по соответствующим ротаметрам и регулируя его подачу редукторами, установленными на баллонах.

Изобретение поясняется двумя графиками: фиг. 1. Закаливающая способность смеси инертных газов аргона и гелия; фиг. 2. Остаточная деформация (осадка по высоте) в зависимости от времени заневоливания тарельчатых пружин, закаленных в различных средах: 1 - в воде; 2 - масле; 3 в гелии (газ).

Способ проверен при исследовании закаливающей способности смеси газов аргона и гелия - фиг. 1. Для этого применяли два метода: теплотехнический и металлургический. В первом случае определяли время (τ) охлаждения серебряного образца диаметром 7,3 мм и высотой 7,5 мм, продуваемого газами после нагрева на 860oC в специальном устройстве и охлаждаемого до 480oC. Время определяли по секундомеру с точностью 0,1 с, наблюдая "зайчик" осциллографа Н10, к которому подключалась термопара, горячий спай которой зачекаливался в центре образца. Во втором случае измеряли твердость тарельчатых пружин из стали 60С2А толщиной 1,1 мм и наружным диаметром 18 мм, закаленных в потоке газа после аустенизации при 860oC. Результаты (фиг. 1) показывают, что для существенного повышения охлаждающей способности смеси газов достаточно добавлять 20% гелия к аргону. При этом время охлаждения серебряного образца сокращается в 2 раза.

На тарельчатых пружинах, закаленных сжатыми газами, выявлены важные их свойства по сравнению с закаленными в масле: меньшая осадка при заневоливании (фиг. 2), повышенная стабильность по сохранению высоты и усилия при последействии, повышенная живучесть (число циклов обжатия до разрушения после закалки в масле 27600, в гелии - 29800). Это определяется меньшей напряженностью структуры таких пружин, что можно объяснить меньшим превышением скорости охлаждения при закалке в газах над критической скоростью закалки, равной для стали 60С2А 30 град/с (в 76 раз при закалке в масле и в 30 раз - газом). Относительная величина разброса знаний усилия пружин при их сжатии: после закалки в масле - 1,5, гелии - 1,0.

Технический результат реализации предлагаемого способа заключается в расширении возможностей закалки в инертных газах аргоне и гелии как технически, а также и экономически. Повышение охлаждающей способности газовой смеси добавкой гелия к аргону позволяет закаливать широкую номенклатуру деталей инструментальной оснастки и деталей конструкций. Ускоренное охлаждение смесью аргона и гелия можно применять при закалке в муфельных электропечах, вакуумных, специальных устройствах лабораторных и промышленных. Сохранение чистой поверхности закаленных деталей, малые поводки и деформации, экологически чистый процесс - это достоинства закалки газовой смесью аргон - гелий. При закалке деталей пресс-форм и штампов таким способом возможна реализация малодеформационной закалки путем применения приемов контрольной закалки и закалки с теплобуфером.

Похожие патенты RU2164247C1

название год авторы номер документа
СПОСОБ МАЛОДЕФОРМАЦИОННОЙ ЗАКАЛКИ ПОСЛЕ НИТРОЦЕМЕНТАЦИИ 1996
  • Карпов Л.П.
  • Суханцев А.Г.
RU2112811C1
Способ светлой закалки деталей 1978
  • Полетаев Александр Валерьянович
  • Жлоба Юрий Иванович
SU740840A1
СПОСОБ ТЕРМИЧЕСКОЙ И ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЬНЫХ ИЗДЕЛИЙ В ВАКУУМЕ 2006
  • Будилов Владимир Васильевич
  • Рамазанов Камиль Нуруллаевич
RU2324001C1
СПОСОБ ОПРЕДЕЛЕНИЯ НЕОБРАТИМОГО ВОДОРОДНОГО ОХРУПЧИВАНИЯ 1993
  • Карпов Л.П.
RU2089623C1
СПОСОБ НИТРОЦЕМЕНТАЦИИ СТАЛИ 1994
  • Карпов Л.П.
  • Миногин В.В.
  • Миненко А.В.
  • Суханцев А.Г.
RU2082820C1
Способ изготовления деталей 1981
  • Симочкин Василий Васильевич
  • Рябова Тамара Семеновна
SU981398A1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ 1990
  • Карпов Л.П.
  • Столбова Н.М.
  • Коротаев В.С.
SU1812798A1
СПОСОБ НИТРОЗАКАЛКИ СТАЛИ С ДВОЙНОЙ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКОЙ 2000
  • Карпов Л.П.
  • Железнов Г.М.
  • Игнатович А.Н.
RU2184796C2
СПОСОБ ТЕРМООБРАБОТКИ ПЕНЬКА СТВОЛА АВТОМАТИЧЕСКОГО СТРЕЛКОВОГО ОРУЖИЯ 2014
  • Великолуг Александр Михайлович
  • Кустова Вера Павловна
  • Постернак Павел Иванович
  • Постернак Иван Павлович
RU2570262C1
СПОСОБ ТЕРМООБРАБОТКИ КРУПНОГАБАРИТНЫХ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ 2001
  • Закиров Р.А.
  • Корытько Н.Г.
  • Воробьев Н.И.
  • Мокринский А.В.
  • Антонов В.И.
  • Шабуров Д.В.
  • Косолапов В.А.
  • Юдин Ю.В.
  • Эйсмондт Ю.Г.
  • Пышминцев И.Ю.
  • Титов С.А.
  • Павлюк П.И.
RU2178004C1

Иллюстрации к изобретению RU 2 164 247 C1

Реферат патента 2001 года СПОСОБ ЗАКАЛКИ В ИНЕРТНЫХ ГАЗАХ

Изобретение относится к области машиностроения, в частности к термообработке, преимущественно закалке, деталей из конструкционных и инструментальных легированных деталей. Задача изобретения - расширить возможности применения инертных газов аргона и гелия для светлой закалки стальных деталей. Применяют смесь состава 20% гелия, остальное аргон. Технический результат - расширяются технологические возможности применения инертных газов для светлой закалки, реализуются преимущества малодеформационной закалки инструмента в муфельных печах, процесс экологически чистый и позволяет встраивать подобные термические установки в пролетах цехов по механической обработке, охлаждающая способность в 2 раза повышается, если к аргону добавлять 20% гелия. 2 ил.

Формула изобретения RU 2 164 247 C1

Способ закалки в инертных газах, включающий аустенизацию стальных деталей, охлаждение со скоростью выше критической в газовой среде, состоящей из аргона и гелия, отличающийся тем, что охлаждение ведут в газовой среде, содержащей, %:
Гелий - 20
Аргон - Остальное

Документы, цитированные в отчете о поиске Патент 2001 года RU2164247C1

МЕТАЛЛУРГИЯ
РЖ
Запальная свеча для двигателей 1924
  • Кузнецов И.В.
SU1967A1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЖАРОПРОЧНЫХ СТАЛЕЙ И СПЛАВОВ 1980
  • Смирнов А.М.
  • Спектор Я.И.
  • Бурдасова Т.А.
  • Исаева Е.С.
  • Янович А.И.
SU854030A1
Способ изготовления инструмента избыСТРОРЕжущЕй СТАли 1979
  • Долгушин Николай Егорович
  • Куколев Валерий Владимирович
  • Поляков Алексей Васильевич
SU850684A1
ТЕХНОЛОГИЯ МАШИНОСТРОЕНИЯ
РЖ
Механическая топочная решетка с наклонными частью подвижными, частью неподвижными колосниковыми элементами 1917
  • Р.К. Каблиц
SU1988A1
МЕТАЛЛОВЕДЕНИЕ И ТЕРМИЧЕСКАЯ ОБРАБОТКА МЕТАЛЛОВ
ЩИТОВОЙ ДЛЯ ВОДОЕМОВ ЗАТВОР 1922
  • Гебель В.Г.
SU2000A1
МЕТАЛЛОВЕДЕНИЕ И ТЕРМИЧЕСКАЯ ОБРАБОТКА МЕТАЛЛОВ
Электрическое сопротивление для нагревательных приборов и нагревательный элемент для этих приборов 1922
  • Яковлев Н.Н.
SU1997A1
Способ термической обработки изделий 1988
  • Пауль Хайльманн
  • Фридрих Прайсер
  • Рольф Шустер
SU1813104A3

RU 2 164 247 C1

Авторы

Карпов Л.П.

Даты

2001-03-20Публикация

1999-08-03Подача