Изобретение относится к способу получения полимеров на основе солей такого мономера как N,N,N,N-триметилметакрилоилоксиэтиламмония с формулой
где
Такие полимеры нашли использование в качестве флокулянтов для очистки сточных вод различного происхождения, в процессах водоподготовки, для интенсификации бумажного производства, а также в качестве загустителя, кондиционера, антистатика.
Известен способ получения водорастворимых катионных полимеров /1/. В соответствии с патентной формулой способ реализуется совокупностью следующих существенных признаков:
1. Полимеризуют виниловые мономеры общей формулы
где
R1 =-H или CH3:R2=-CH2CH2 - или -CH2CH(OH)CH2-;
R3 и R4 = -CH3 или -CH2CH2; R5 = -CnH2n+1, при n - целое число от 0 до 4; -CH2C6H5 или -CH2 COOH;
2. Полимеризуют вышеперечисленные мономеры с выделением и очисткой после из синтеза кватернизацией N,N-диметиламино-алкил(мет)акрилатов.
3. Полимеризуют либо сам указанный мономер, либо его в смеси с другим виниловым мономером, количество которого не может превышать 25 мас.% от суммарного количества мономеров, в противном случае выделяется такое большое количество тепла, которое невозможно эффективно отводить, что делает реакцию полимеризации нерегулируемой.
4. Полимеризацию ведут в присутствии радикальных инициаторов.
5. Полимеризацию проводят в присутствии 7-18 мас.% воды, уменьшение количества которой до 6% ведет к резкому падению величины молекулярной массы и конверсии.
6. Полимеризацию осуществляют таким образом, чтобы конечная температура системы достигала 110o - 150oC.
7. Полимеризацию ведут при pH водной среды 3-8.
8. Полимеризацию ведут в атмосфере, не содержащей кислорода.
Снижение содержания воды ниже 7% кроме указанных последствий приводит также к тому, что полимеризация идет неравномерно по объему из-за наличия в системе большого количества мономера, который не растворен и находится в кристаллической фазе. При этом образуется как нерастворимая фракция, так и низкомолекулярный продукт. Кроме того, вне зависимости от химической природы радикальных инициаторов будь то окислительно-восстановительные системы (соли двухвалентного железа - перекись водорода или аскорбиновая кислота - персульфат щелочного металла) или водорастворимые азосоединения, реакционная полимеризующая смесь должна прогреваться до 110o-150oC , иначе снижается выход целевого продукта и увеличивается количество остаточного мономера.
В известном способе в качестве целевого продукта получают полимер с вязкостью 1% водного раствора до 7000 ср (вискозиметр Брукфилда, это соответствует характеристической вязкости 4-5 дл/г или величине молекулярной массы, не превышающей 4,5 - 5 млн. Д).
Задачей предлагаемого изобретения являлось получение легко измельчающегося водорастворимого высокомолекулярного катионного полимера в присутствии малых количеств воды без стадии нагревания при повышенных температурах. Эта задача была решена способом получения полимеров на основе соли N,N,N,N-триметилметакрилоилоксиэтиламмония, например бензолсульфоната, метилсульфата и т.п. Способ реализуется совокупностью следующих существенных признаков:
1. Проводят полимеризацию соли N,N,N,N- триметилметакрилоилоксиэтиламмония общей формулы по схеме
2. К соли указанной структуры добавляют 5-6 мас.% воды в расчете на конечную смесь.
3. Смесь нагревают до температуры, необходимой и достаточной для образования гомогенного сиропа.
3. Полученную смесь нагревают при той же температуре в атмосфере, не содержащей кислорода.
4. Полимеризацию проводят при pH среды 3,0-5,0.
5. Гомогенизацию воды в бензолсульфонате и полимеризацию смеси проводят при 70o-75oC.
6. Гомогенизацию воды в метилсульфате и полимеризацию смеси проводят при 45o - 50oC.
Отличительными признаками заявленного способа являются признаки 1, 2, 5, 6.
Анализ известного уровня науки и техники не позволил обнаружить решения, идентичные заявленному по совокупности существенных признаков.
Это свидетельствует о новизне решения.
Анализ не позволил также найти опубликованные решения, в которых была бы использована для полимеризации система, содержащая мономеры с добавкой 5-6 мас.% воды. В заявленном способе оказалось возможным получить однородный полимер с высокой молекулярной массой при полимеризации в присутствии такого количества воды, которое не может обеспечить с точки зрения здравого смысла и существующей практики полное растворение кватернизованного мономера и получение однородного раствора мономера, что необходимо для проведения полимеризации.
Однако в заявленных условиях удалось получить практически сухой целевой продукт в виде легко измельчаемого и хорошо растворимого полимера с характеристической вязкостью 6,5 - 7,5 дл/г или с ММ до 9 млн. Д.
Таким образом, предлагаемый способ основан на ранее неизвестной и не вытекающей с очевидностью из известных свойств аналогичных по структуре мономеров способности таких мономеров, как соли N,N,N,N-триметилметакрилоилоксиэтиламмония (например, бензолсульфонат, метилсульфат и др.) образовывать равномерно распределенную систему в присутствии 5-6 мас.% воды в найденных условиях проведения полимеризации.
Нахождение новой зависимости "состав - свойство" подтверждает соответствие заявленного предложения критерию "изобретательский уровень"
Строение полимеров, полученных заявленным способом, установлено методами ЯМР-спектроскопии, подтвердившими сохранность в ходе полимеризации всех имеющихся в мономере функциональных групп за исключением винильной. Элементный анализ показал сохранность состава при полимеризации.
Флокулирующие свойства полученных полимеров были изучены по принятой методике: определяли скорость полного осаждения 0,1% суспензии каолина (величина частиц 0,5-40 мкм) в воде при комнатной температуре. Для этого 0,5 г каолина суспендируют в 500 мл воды при перемешивании в течение 30-60 с. Практически полное осветление в мерном 500 мл цилиндре без добавления каких-либо флокулянтов происходит через 48 ч. При добавлении 10 мл 0,1 мас.% водного раствора флокулянта ПЕРКОЛ (ФРГ) осаждение суспензии начинается через 1 мин и завершается через 15 мин. В этих же условиях добавление полимерных флокулянтов на основе соли поли-N,N,N/N-триметилметакрилоилоксиаминоэтиламмония, способ получения которых представлен в настоящем описании, приводит к началу осаждения через минуту после добавления флокулянта и завершается через 10-15 мин в зависимости от ММ полимерного флокулянта.
Для лучшего понимания сущности, а также для подтверждения соответствия заявленного изобретения критерию "промышленная применимость) приводим примеры конкретной реализации предложения, отмечая при этом что такие примеры не могут исчерпать сущность изобретения.
Пример 1. В 0,25 л стеклянный стакан загружают 66,4 г N,N,N,N-триметилметакрилоилоксиэтиламмоний бензолсульфоната и 4,2 г воды (содержание воды в смеси 6 мас. %, в расчете на конечную смесь). Стакан помещают в водяную баню и при перемешивании при 70oC растворяют мономер. После полного растворения получают густой прозрачный сироп. Его продувают током азота для удаления кислорода. Затем в токе азота сироп подкисляют 50% серной кислотой до pH 3 и выливают в металлическую кювету, предварительно нагретую до той же температуры. Кювету с полимерным раствором помещают в термостат и в атмосфере азота выдерживают 20 ч при 70oC. Полученный полимер отделяется после охлаждения и легко измельчается механически. Выход сухого, сыпучего полимера с размером частиц менее 2 мм и с остаточной влажностью около 4% 68,5 г, то есть 94%.
Измельченный полимер легко растворяется в воде при интенсивном перемешивании и нагревании до 50o - 60oC.
Вязкость 0,1% водного раствора при 20oC 43 сПз, что соответствует характеристической вязкости 7 дл/г (1% раствор NaNO3, 20oC) или ММ около 8 млн. Д.
Пример 2. Выполнен в условиях примера 1, но температура полимеризации 75oC, время выдержки при этой температуре 15 ч. Содержание воды в реакционной смеси 5%. Характеристики полученного полимера аналогичны приведенным в примере 1. Остаточное содержание воды 3%.
Пример 3. Выполнен в условиях примера 1, но количество введенной воды составляет 4 мас. %. Для получения однородной по прозрачности реакционной смеси температуру полимеризации необходимо было поднять до 85oC. Полученный полимер частично сшит, содержит низкомолекулярную фракцию, неполностью растворим в воде.
Пример 4. В условиях примера 1 46 г сульфометильной соли N,N,N,N-триметилметакрилоилоксиэтиламмония и 2,9 г воды (6 мас.%) нагревают при 50oC. После продувания током азота и подкисления до pH 5,0 прогревают при температуре 50oC в течение 20 ч. После охлаждения до комнатной температуры полимер отделяется от полимеризационной кюветы и легко измельчается механически. Выход 46,0 г или 96% (от теории) при содержании воды 4,5%. Характеристическая вязкость 7,5 дл/г, что соответствует величине ММ около 9 млн. Д.
Пример 5. Полимер получают в условиях примера 4 при содержании воды 5%, при pH 4,5 и при температуре 45oC. Выход целевого полимера 95% при содержании воды 3,5%. Величина характеристической вязкости 6,5 дл/г, что соответствует величине ММ около 7 млн. Д.
Пример 6. Полимер получают в условиях примера 4 при содержании воды 4%. Для получения визуально однородной мономерной смеси потребовалось нагревание до 65oC.
В результате образуется частично сшитый продукт, содержащий низкомолекулярную фракцию.
Анализ полученных примеров показывает, что в заявленных условиях получен полимерный продукт, соответствующий всем требованиям решаемой задачи.
Отклонение от заявленных условий приводит к синтезу полимеров, отличающихся по своим свойствам от целевого продукта:
1. Снижение содержания мономера в реакционной смеси до 80-88% приводит к получению водного геля с повышенной липкостью и невозможности измельчения без дополнительной сушки.
2. Повышение содержания мономера до 96-99% затрудняет получение однородного мономерного раствора, что приводит к неоднородности полимеризуемой смеси с образованием частично сшитого продукта, содержащего низкомолекулярную фракцию.
3. Снижение температуры полимеризации до 35o - 40oC приводит у существенному увеличению времени полимеризации и снижению выхода для метилсульфатной соли и невозможности получения гомогенной смеси в случае бензолсульфонатной соли.
4. Повышение температуры гомогенизации до 85oC в случае бензолсульфонатной соли и до 65oC в случае метилсульфатной соли существенно сокращает время, необходимое для отдувки кислорода током азота и для установления pH, поскольку одновременно начинает проходить полимеризация и образуется частично сшитый продукт.
Перечень источников информации
1. Патент ФРГ N 2621456, МПК: 2 C 08 A 2/34, 1976.
Описывается способ получения полимеров на основе солей N, N, N, N-триметилметакрилоилоксиэтиламмония путем нагревания указанных солей в атмосфере, не содержащей кислорода, в водосодержащей среде с регулируемой величиной pH, заключающийся в том, что к соли N, N, N, N-триметилметакрилоилоксиэтиламмония добавляют 5-6 мас.% воды в расчете на конечную смесь и нагревают до температуры, необходимой и достаточной для получения гомогенного сиропа, после чего устанавливают значение pH, равное 3,0-5,0, и ведут полимеризацию при нагревании при той же температуре. Способ позволяет получить легко измельчающийся водорастворимый высокомолекулярный катионный полимер в присутствии малых количеств воды без стадии нагревания при повышенных температурах. 3 з.п. ф-лы.
SU 6222820 A, 23.08.1978 | |||
Электроклапан | 2015 |
|
RU2621456C2 |
Устройство для окорки лесоматериалов | 1987 |
|
SU1442408A1 |
Устройство для зажигания газоразрядных ламп | 1976 |
|
SU568225A1 |
Механизм для перемещения толкателя купАКОВОчНОй МАшиНЕ | 1979 |
|
SU835888A1 |
DE 3244274 A1, 30.05.1984. |
Авторы
Даты
2001-04-10—Публикация
1997-05-06—Подача