СПОСОБ ПРОИЗВОДСТВА НИЗКОКРЕМНИСТОЙ СТАЛИ Российский патент 2001 года по МПК C21C7/64 

Описание патента на изобретение RU2166550C2

Изобретение относится к черной металлургии, в частности к производству высококачественной низкокремнистой листовой стали, в том числе для глубокой вытяжки при штамповке.

Известен способ производства низкокремнистой углеродистой спокойной стали с массовой долей кремния в ней не более 0,05%, включающий выплавку металла в 50-350-т конвертерах и 450-т мартеновских печах, раскисление его ферромарганцем и алюминием (титаном), разливку в изложницы или на УНРС. При этом нормы содержания углерода и вредных примесей устанавливаются такими же, как и для кипящих полуспокойных и спокойных сталей - Труды второго конгресса сталеплавильщиков, М. Изд. АО "Черметинформация", 1994, с. 254-256 [1]. Недостатком указанного способа является отсутствие использования рафинирующей, в том числе десульфурирующей операции обработки стали в ковше.

Наиболее близким по технической сути к предлагаемому способу является способ производства низкокремнистой стали в 350-т конвертерах АП МК "Азовсталь" - Труды третьего конгресса сталеплавильщиков, М. Изд. АО "Черметинформация", 1996, с. 290-292 [2], принятый в качестве прототипа, предусматривающий отсечку конвертерного шлака в начале и в конце плавки, использование низкокремнистых ферросплавов и первичного алюминия, расход твердой шлаковой смеси не менее 2 т и алюминия во время выпуска до 400-500 кг, продолжительность обработки металла аргоном не более 10 мин, футеровку промежуточных ковшей огнеупорами с низким содержанием SiO2, отсечку покровного шлака сталеразливочного ковша в конце разливки плавки.

Недостатками известного способа [2] являются низкая степень десульфурации металла, не позволяющая получать низкоуглеродистую низкокремнистую сталь с содержанием серы по массе не более 0,010%, невозможность глобуляризации сульфидных неметаллических включений, что вызывает низкий уровень пластичности и ударной вязкости проката в поперечном направлении, то есть высокую анизотропию свойств металла, частое зарастание разливочных стаканов глиноземистыми включениями при разливке сталей с массовой долей алюминия до 0,07%.

Техническим результатом предлагаемого изобретения является:
- повышение степени десульфурации низкокремнистой стали с массовой долей кремния не более 0,05%, обеспечивающее получение в готовом металле содержание серы по массе не более 0,010%;
- глобуляризация сульфидных включений в указанной стали за счет перевода их в малодеформируемые при прокатке сульфиды и оксисульфиды кальция, что обуславливает повышение пластичности и ударной вязкости готового проката;
- трансформация твердых включений глинозема в жидкие (при температуре разливки) алюминаты кальция, которые легко всплывают и ассимилируются шлаком, устраняя тем самым возможность зарастания отверстий разливочных стаканов скоплениями твердых включений глинозема.

Это достигается тем, что в известном способе [2] производства низкокремнистой стали с массовой долей кремния не более 0,05%, включающем выплавку металла, отсечку шлака от металла в начале и конце выпуска его из сталеплавильного агрегата, комплексную обработку металла при выпуске в ковш с основной футеровкой посредством присадки алюминия, шлакообразующей смеси, раскислителей, легирующих материалов, продувку металла в ковше после его выпуска инертным газом, по изобретению в металл дополнительно вводят кальцийсодержащие раскислители, в качестве которых во время выпуска металла присаживают алюмокальциевую (AlCa) лигатуру, содержащую, мас.%: кальция 15-35, алюминия 65-85, и после завершения выпуска металла при содержании в нем 0,02-0,05 мас.% алюминия присаживают порошковую проволоку с наполнителем из смеси, содержащей, масс.%: гранулированного кальция 60-80, порошка алюминия 40-20, при этом количество вводимого кальция во время и после выпуска металла поддерживается в пределах 0,2-0,4 и 0,3-0,6 кг на 1 т стали соответственно.

Кроме того, с целью усиления десульфурации и глобуляризации сульфидных включений металл в ковше после выпуска может быть продут через погружную фурму инертным газом:
а) со смесью порошков алюмокальциевой лигатуры и веществ-стабилизаторов, в которой поддерживают соотношение порошков алюмокальциевой лигатуры и веществ-стабилизаторов равным 4:1; в качестве веществ-стабилизаторов могут быть использованы железо, алюминий, плавиковый шпат и/или карбид кальция;
б) со смесью порошков извести и плавикового шпата в соотношении 4: 1 из расчета ввода смеси в количестве 1,5-4,0 кг на 1 т стали.

С этой же целью металл в ковше одновременно может быть обработан основным безжелезистым шлаком и инертным газом.

Предлагаемый способ позволяет производить низкокремнистую сталь с массовой долей кремния не более 0,05%, с различными категориями по содержанию серы не более 0,010 и 0,005% по массе, в том числе применяемую в виде холоднокатаного листа для изготовления деталей кузовов автомобилей сложной вытяжки.

Сера обладает неограниченной растворимостью в жидкой стали и при производстве по известному способу [2] образует в ней химические соединения MnS и FeS с температурой плавления соответственно 1610oC и 1190oC. Сера сильно ликвирует при затвердевании металла: ее соединения с марганцем и железом скапливаются по границам зерен, образуют сульфидные включения, которые легко деформируются при прокатке, резко снижая пластические свойства и ударную вязкость стали, особенно поперек волокна. Низкое содержание кремния в стали (до 0,05%) увеличивает растворимость серы и существенно ухудшает условия для ее удаления из металла. В предлагаемом способе использовано известное высокое сродство кальция к кислороду и сере и его способность образовывать при взаимодействии с серой нерастворимый в стали сульфид CaS, легко всплывающий из металла в шлак.

В соответствии с этим ввод в низкокремнистую сталь, предварительно раскисленную алюминием, кальцийсодержащих раскислителей сопровождается десульфурацией металла за счет активного образования частиц сульфида кальция и всплытия их в шлак. Оставшиеся в затвердевшем металле включения сульфидов и оксисульфидов кальция в отличие от MnS и FeS при последующей прокатке сохраняют свою исходную глобулярную форму, следствием чего является повышение пластичности и ударной вязкости проката по сравнению с этими свойствами металла, полученного по известному способу [2].

Другим положительным результатом обработки кальцийсодержащими раскислителями низкокремнистой стали, обычно содержащей не менее 0,02 мас.% алюминия и включения глинозема, является взаимодействие кальция с этими включениями и трансформация твердых включений глинозема в жидкие (при температуре разливки стали) алюминаты кальция, которые легко всплывают и ассимилируются шлаком, и таким образом устраняется зарастание отверстий разливочных стаканов.

Алюмокальциевую (AlCa) лигатуру, содержащую, мас.%: кальция 15-35, алюминия 65-85, изготовляют методом сплавления составляющих компонентов в индукционной печи с основной футеровкой в защитной атмосфере, разливают на воздухе в чугунные изложницы и дробят отливки на куски.

Порошковую проволоку с наполнителем из смеси, содержащей, мас.%: гранулированного кальция 60-80 и порошка алюминия 40-20, изготовляют по известной технологии - Металлург, 1994, N 1, с. 28-29 [3].

Пример. Предложенный способ осуществляли при производстве низкокремнистой стали, содержащей мас.%: кремния не более 0,05, углерода 0,12-0,19, марганца 0,30-0,70, фосфора не более 0,035, алюминия 0,02-0,07, и отвечающей требованиям к стали марок SAE 1018 и А 36 по стандартам США ASTM 659/А659М-92 и ASTM 36/А36М-94. Сталь выплавляли в 350-т конвертерах и 100-т дуговых печах и при температуре в пределах 1660-1700oC выпускали в ковш с основной футеровкой. При этом в начале и конце выпуска отсекали шлак сталеплавильного агрегата от металла.

Параметры обработки в ковше низкокремнистой стали кальцийсодержащими раскислителями по предложенному способу представлены в табл. 1 (плавки N 1-5) в сопоставлении с параметрами обработки плавки N 6 по известному способу-прототипу [2].

При наполнении ковша металлом на 5-10% высоты в него последовательно присаживали кусковые алюминий, алюмокальциевую лигатуру (плавки 1-5), твердую шлакообразующую смесь (ТШС) из извести и плавикового шпата и ферромарганец. Все присадки завершали до наполнения металлом 50% высоты ковша. После выпуска плавки производили усреднительную продувку расплава инертным газом - аргоном в течение 5-ти минут (плавки N 1-4 конвертерные) и 3-х минут (плавка N 5 электродуговая), затем замеряли температуру и отбирали пробу металла на анализ. По результатам анализа, при необходимости, корректировали содержание в металле углерода, марганца и алюминия. После этого на плавках 1- 5 при содержании в стали 0,02-0,05 мас.% алюминия в расплав вводили трайб-аппаратом кальцийалюминиевую порошковую проволоку. Затем металл продували аргоном не менее 4 мин. Металл плавки 3 дополнительно продували через погружную фурму в струе аргона смесью порошков алюмокальциевой лигатуры и вещества-стабилизатора (плавикового шпата) в соотношении 4:1.

Металл плавки N 4 дополнительно продували через погружную фурму несущим газом-аргоном со смесью порошков извести и плавикового шпата в соотношении 4:1.

Металл плавки N 5 обрабатывали в ковше основным безжелезистым шлаком (табл. 1) и при содержании в металле 0,02 мас.% алюминия в него вводили CaAl порошковую проволоку. Продувку металла аргоном осуществляли через пробку в днище ковша.

Сталь всех плавок после завершения описанных операций разлили на машинах непрерывного литья заготовок по существующей технологии на слябы. Разливку вели с использованием основной футеровки рабочего слоя промежуточных ковшей. Слябы прокатали на стане горячей прокатки в листы толщиной 10-12 мм. На пробах, отобранных от листов, на каждой плавке определили механические свойства вдоль и поперек волокна и характер сульфидных и оксисульфидных включений на продольных микрошлифах. Результаты осуществления предложенного технического решения представлены в табл. 1 и 2.

Анализ полученных результатов показывает, что предложенный способ производства низкокремнистой стали обеспечивает получение в готовом металле содержания кремния не более 0,05% мас.%, содержания серы не более 0,010% при степени десульфурации в пределах 41,6-63,6%.

Использование кроме ввода кусковой AlCa-й лигатуры и CaAl порошковой проволоки дополнительных видов обработки:
- вдувание в струе аргона через погружную фурму смеси порошка AlCa-й лигатуры с веществом-стабилизатором в соотношении 4: 1 (плавка 3);
- вдувание смеси порошков извести с плавиковым шпатом в соотношении 4: 1 (плавка 4);
- присадка в ковш основного безжелезистого шлака (плавка 5), что повысило степень десульфурации с 41,6-50,0% (плавки 1 и 2) до значений соответственно 58,3; 60,0 и 63,6%.

Наилучшие результаты по разливаемости стали (отсутствию зарастания стаканов) обеспечиваются при расходе кальция из CaAl-й порошковой проволоки в пределах 0,30-0,60 кг/т.

Предложенное техническое решение позволило трансформировать неметаллические включения пластичных сульфидов марганца и тугоплавких строчек корунда (глинозема) в легкоплавкие алюминаты кальция в оболочке из сульфидов кальция, что практически исключило зарастание отверстий разливочных стаканов, а глобулярный характер трансформированных неметаллических включений обусловил повышение пластичности (относительного удлинения) и ударной вязкости готового листа, особенно поперек волокна. Последнее сопровождается снижением анизотропии ударной вязкости с 1,73 до 1,24, т.е. повышением однородности свойств готового проката низкокремнистой стали.

Литература
1. Труды второго конгресса сталеплавильщиков, М. Изд. АО "Черметинформация", 1994, с. 254-256.

2. Труды третьего конгресса сталеплавильщиков, М. Изд. АО "Черметинформация", 1996, с. 290-292.

3. Металлург, 1994, N 1, с. 28-29.

Похожие патенты RU2166550C2

название год авторы номер документа
Способ внепечной обработки стали в ковше 2020
  • Вусихис Александр Семенович
  • Гуляков Владимир Сергеевич
RU2735697C1
Способ производства низкокремнистой стали 2023
  • Шеховцов Евгений Валентинович
  • Ремиго Сергей Александрович
  • Кромм Владимир Викторович
  • Корогодский Алексей Юрьевич
  • Ковязин Игорь Владимирович
  • Ткачев Андрей Сергеевич
RU2818526C1
СПОСОБ КОВШОВОЙ ОБРАБОТКИ ЛЕГИРОВАННЫХ СТАЛЕЙ 2016
  • Зайцев Александр Иванович
  • Степанов Алексей Борисович
  • Арутюнян Наталия Анриевна
  • Карамышева Наталия Анатольевна
  • Пименов Александр Вячеславович
RU2637194C1
СПОСОБ ПРОИЗВОДСТВА НИЗКОКРЕМНИСТОЙ СТАЛИ 2013
  • Никонов Сергей Викторович
  • Жиронкин Михаил Валерьевич
  • Козлов Алексей Евгеньевич
  • Краснов Алексей Владимирович
  • Петенков Илья Геннадьевич
  • Салиханов Павел Алексеевич
RU2533263C1
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 2002
  • Наконечный Анатолий Яковлевич
  • Урцев В.Н.
  • Хабибулин Д.М.
  • Аникеев С.Н.
  • Платов С.И.
  • Капцан А.В.
RU2228371C1
СПОСОБ ПРОИЗВОДСТВА НИЗКОКРЕМНИСТОЙ СТАЛИ 2008
  • Луценко Андрей Николаевич
  • Бенедечук Игорь Борисович
  • Ерошкин Сергей Борисович
  • Водовозова Галина Сергеевна
  • Балдаев Борис Яковлевич
  • Прудов Константин Эдуардович
  • Кузнецов Сергей Николаевич
  • Трифонова Марина Ивановна
RU2353667C1
Способ производства стали 1975
  • Мазуров Евгений Федорович
  • Евграшин Анатолий Михайлович
  • Новиков Виктор Николаевич
  • Каблуковский Анатолий Федорович
  • Петров Борис Степанович
  • Тюрин Евгений Илларионович
  • Шахнович Валерий Витальевич
  • Зырянов Юрий Евгеньевич
SU533644A1
Способ обработки стали 1986
  • Рыбалов Георгий Васильевич
  • Шувалов Михаил Дмитриевич
  • Объедков Александр Перфилович
  • Иванов Борис Сергеевич
  • Куликов Игорь Вячеславович
  • Шемякин Анатолий Васильевич
  • Плискановский Александр Станиславович
  • Кулик Николай Николаевич
  • Мельник Сергей Григорьевич
  • Востряков Алексей Иосифович
  • Клянин Андрей Владимирович
SU1371980A1
Способ производства стали 1982
  • Шалимов Анатолий Георгиевич
  • Каблуковский Анатолий Федорович
  • Объедков Александр Перфилович
  • Куклев Александр Валентинович
  • Шемякин Анатолий Васильевич
  • Носоченко Олег Васильевич
  • Харахулах Василий Сергеевич
  • Ганошенко Владимир Иванович
  • Голод Владимир Васильевич
  • Мельник Сергей Григорьевич
SU1062273A1
СПОСОБ ЛЕГИРОВАНИЯ СТАЛИ МАРГАНЦЕМ 1995
  • Липухин Ю.В.
  • Каблуковский А.Ф.
  • Ябуров С.И.
  • Никулин А.Н.
  • Агарышев А.И.
  • Тишков В.Я.
  • Клочай В.В.
  • Кулешов В.Д.
  • Кудряшов Л.А.
  • Котрехов В.А.
  • Фомин В.С.
  • Дулесов Н.К.
  • Мендекинов С.Т.
RU2104311C1

Иллюстрации к изобретению RU 2 166 550 C2

Реферат патента 2001 года СПОСОБ ПРОИЗВОДСТВА НИЗКОКРЕМНИСТОЙ СТАЛИ

Изобретение относится к металлургии, в частности к производству стали с массовой долей кремния не более 0,05% с использованием комплексной обработки металла при выпуске в ковш с основной футеровкой, алюминием, кальцийсодержащими раскислителями (КСР), легирующими материалами и шлакообразующими смесями. В ковш во время выпуска металла присаживают куски в качестве (КСР) алюмокальциевой лигатуры с массовой долей кальция 15-35% и алюминия 65-85%. После завершения выпуска плавки при содержании в металле 0,02-0,05% алюминия присаживают порошковую проволоку с наполнителем из смеси, содержащей гранулированный кальций в количестве 60-80% по массе и порошок алюминия 40-20% по массе из расчета ввода кальция во время и после выпуска металла в количестве соответственно 0,2-0,4 и 0,3-0,6 кг на 1 т стали. Изобретение позволяет повысить степень десульфурации стали и получить низкокремнистую сталь с содержанием серы не более 0,005%. 4 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 166 550 C2

1. Способ производства низкокремнистой стали с массовой долей кремния не более 0,05%, включающий выплавку металла, отсечку шлака от металла в начале и конце выпуска его из сталеплавильного агрегата, комплексную обработку металла при выпуске в ковш с основной футеровкой посредством присадки алюминия, шлакообразующей смеси, раскислителей, легирующих материалов, продувку металла в ковше после его выпуска инертным газом, отличающийся тем, что в металл дополнительно вводят кальцийсодержащие раскислители, в качестве которых во время выпуска металла присаживают алюмокальциевую лигатуру, содержащую, мас. %: кальция 15 - 35, алюминия 65 - 85, и после завершения выпуска металла при содержании в нем 0,02 - 0,05 мас.% алюминия присаживают порошковую проволоку с наполнителем из смеси, содержащей, мас.%: гранулированного кальция 60 - 80, порошка алюминия 40 - 20, при этом количество вводимого кальция во время и после выпуска металла поддерживается в пределах 0,2 - 0,4 и 0,3 - 0,6 кг на тонну стали соответственно. 2. Способ по п. 1, отличающийся тем, что после выпуска металл в ковше продувают через погружную фурму инертным газом со смесью порошков алюмокальциевой лигатуры и веществ-стабилизаторов, при этом в смеси поддерживают соотношение порошков алюмокальциевой лигатуры и веществ-стабилизаторов равным 4 : 1. 3. Способ по п.2, отличающийся тем, что в качестве веществ-стабилизаторов используют железо, алюминий, плавиковый шпат и/или карбид кальция. 4. Способ по п. 1, отличающийся тем, что после выпуска металл в ковше продувают через погружную фурму инертным газом со смесью порошков извести и плавикового шпата в соотношении 4 : 1, из расчета ввода смеси в количестве 1,5 - 4,0 кг на тонну стали. 5. Способ по п.1, отличающийся тем, что металл в ковше одновременно обрабатывают основным безжелезистым шлаком и инертным газом.

Документы, цитированные в отчете о поиске Патент 2001 года RU2166550C2

ГАНОШЕНКО В.И
и др
Особенности технологии производства низкокремнистой стали: Труды третьего конгресса сталеплавильщиков
Ассоциация сталеплавильщиков АО "Черметинформация"
- М., 1996, с
РЕЛЬСОВАЯ ПЕДАЛЬ 1920
  • Романовский Я.К.
SU290A1
Способ производства низкоуглеродистой,низкокремнистой,малоазотистой легированной алюминием стали 1986
  • Поживанов Александр Михайлович
  • Федосеенко Василий Алексеевич
  • Крулевецкий Семен Аронович
  • Шахпазов Евгений Христофорович
  • Пак Юрий Алексеевич
  • Федосенко Федор Васильевич
SU1402621A1
Способ внепечной обработки стали 1987
  • Поживанов Александр Михайлович
  • Югов Петр Иванович
  • Кириленко Виктор Петрович
  • Федосенко Федор Васильевич
  • Климов Борис Петрович
  • Хребин Валерий Николаевич
SU1650716A1
Способ производства стали 1976
  • Климов Сергей Васильевич
  • Салаутин Виктор Александрович
  • Каблуковский Анатолий Федорович
  • Буланкин Владимир Ермолаевич
  • Ткаченко Эдуард Васильевич
  • Затаковой Юрий Анатольевич
  • Панин Валентин Иванович
SU558944A1
Способ производства легированной стали 1990
  • Косой Леонид Финеасович
  • Ябуров Сергей Иванович
  • Рыбалов Георгий Васильевич
  • Носоченко Олег Васильевич
  • Сахно Валерий Александрович
  • Иванов Евгений Анатольевич
  • Поживанов Михаил Александрович
  • Мельник Сергей Григорьевич
  • Караваев Николай Михайлович
SU1752780A1
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 1993
  • Каблуковский А.Ф.
  • Камалов А.Р.
  • Ябуров С.И.
  • Никулин А.Н.
  • Ермаченков В.А.
  • Молчанов О.Е.
  • Тишков В.Я.
  • Чумаков С.М.
  • Кулешов В.Д.
  • Урюпин Г.П.
  • Гавриленко Ю.В.
  • Филатов М.В.
  • Галанов А.И.
  • Котрехов В.А.
  • Фомин В.С.
  • Анисимов Ю.А.
  • Дулесов Н.К.
  • Мендекинов С.Т.
  • Свяжин А.Г.
  • Казаков С.В.
RU2061762C1
RU 94008472 A1, 10.11.1995
ИСТОЧНИК СВЕТА 2010
  • Нит Эндрю Саймон
RU2552107C2
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Ротор синхронного генератора торцевого типа 1957
  • Паластин Л.М.
  • Платонова А.М.
  • Чесноков А.И.
SU110803A1

RU 2 166 550 C2

Авторы

Чумаков С.М.

Каблуковский А.Ф.

Ябуров С.И.

Никулин А.Н.

Стрелецкий В.В.

Тишков В.Я.

Зинченко С.Д.

Филатов М.В.

Загорулько В.П.

Лятин А.Б.

Шевцов А.З.

Лосицкий А.Ф.

Деревянкин М.А.

Даты

2001-05-10Публикация

1999-03-26Подача