Изобретение относится к газовому анализу органических соединений и может быть рекомендовано дня селективного определения хлорфенолов в воздухе в присутствии фенола с применением пьезокварцевых сенсоров.
В качестве прототипа выбран способ определения фенола в воздухе с применением пьезокварцевых сенсоров, на электроды которых нанесено покрытие на основе полиэтиленгликоля 2000. Анализируемая газовая смесь пропускалась через ячейку детектирования со скоростью (3,3÷3,5) x 10-6 м3/c (Т.А.Кучменко, К. В. Криунац, Л.В.Раякович, М.Б.Бастич, Я.И.Коренман. Определение фенола в воздухе методом пьезокварцевого микровзвешивания // Журн. аналит. химии. - 1999. - Т. 54, 2. - С. 178-182). Способ характеризуются невысокой чувствительностью, длительным временем анализа, не позволяет осуществлять определение хлорфенолов в присутствии фенола.
Технической задачей изобретения является повышение чувствительности и селективности определения хлорфенолов в воздухе в присутствии фенола, сокращение продолжительности анализа.
Технический результат достигается тем, что в качестве покрытия пьезокварцевого сенсора применяют пленку на основе 1, 2, 3-трис/β-цианэтокси/пропана, а газовую смесь при проведении анализа пропускают через ячейку детектирования со скоростью (3,3÷3,5)x(10-5 м3/с, что позволяет повысить чувствительность определения хлорфенолов, обеспечивает возможность определения хлорфенолов в воздухе в присутствии фенола, а также уменьшает затраты времени на проведение анализов.
На основании исследования патентной и научной литературы можно сделать вывод, что совокупность существенных признаков является новой и позволяет добиться повышение чувствительности и избирательного определения хлорфенолов в воздухе в присутствии фенола, а также сократить время анализа.
Способ заключается в том, что для определения хлорфенолов в воздухе в присутствии фенола газовую смесь, содержащую хлорфенолы и фенол, вводили в поток газа-носителя (аргон, воздух) со скоростью (3,3÷3,5) x 10-5 м3/с и пропускали через ячейку детектирования, содержащую серийно выпускаемый пьезокварцевый резонатор АТ-среза (частота колебаний 8-9,5 МГц), на электроды которого наносили 1 мкл раствора 1, 2, 3-трис/β-цианэтокси/пропана в ацетоне (с концентрацией 10-12 мг/мл). Для испарения растворителя (до постоянной массы пленки покрытия) пьезокварцевый сенсор высушивали при 65oС. Масса пленки после испарения растворителя составляла 10-12 мкг. Снижение или увеличение массы пленки пьезокварцевого сенсора за границы этих значений приводит к существенному уменьшению чувствительности определения. После проведения анализа по предлагаемому способу регенерацию пленки пьезокварцевого сенсора осуществляли путем пропускания через ячейку детектирования чистого газа-носителя. Определение концентрации хлорфенолов в воздухе осуществляли по градуировочному графику, построенному с применением стандартных газовых смесей, которые получали пропусканием газа-носителя через термостатированную диффузионную ячейку, содержащую определяемое соединение. Скорость газа-носителя измеряли поплавковыми ротаметрами. Объем пропущенного газа контролировали с помощью ротационного газового счетчика с точностью ± 0,0001 м3.
В качестве аналитического отклика использовали изменение частоты колебаний пьезокварцевого сенсора при сорбции хлорфенолов и фенола (Δt). Величину массы пленки 1, 2, 3-трис/β-цианэтокси/пропана и сорбируемых хлорфенолов (или фенола) определяли по уравнению Зауэрбрея:
Δf = -2,3×106×f
где Δf- изменение резонансной частоты колебаний пьезокварцевого сенсора при нанесении пленки (f0- fпл.) или сорбции определяемого соединения (fпл.- fа), Гц;
f0 - резонансная (базисная) частота колебаний пьезокварцевого сенсора, МГц;
Δm - масса нанесенного покрытия на основе 1, 2, 3-трис/β-цианэтокси/пропана или хлорфенолов (фенола) в пленке, г;
S - площадь электродов пьезокварцевого сенсора, см2.
Чувствительность определения хлорфенолов с помощью пьезокварцевого сенсора, модифицированного 1, 2, 3-трис/β-цианэтокси/пропаном, оценивали по коэффициенту распределения:
KD = Δmo/Δmпл.×Co,
где Δmo- масса сорбируемых хлорфенолов;
Δmпл.- масса пленки фрактонитрила;
С0 - концентрация хлорфенолов в газовой фазе.
Селективность определения хлорфенолов в присутствии фенола предлагаемым способом рассчитывали по следующему уравнению (КА/В):
KA/B = ΔmA×CB/ΔmB×CA,
где ΔmA, ΔmB- массы хлорфенолов и фенола, сорбированных покрытием пьезокварцевого сенсора;
CA, СB - концентрации хлорфенолов и фенола в газовой фазе соответственно.
При применении предлагаемого способа определения хлорфенолов в воздухе в присутствии фенола наблюдается повышение чувствительности определения хлорфенодов (KD=2,3; по прототипу КD=0,2), а также достигается возможность раздельного определения хлорфенолов и фенола (КA/B=10,0; по прототипу KА/B=0,1), сокращается время анализа, поскольку при увеличении скорости газа-носителя быстрее достигается межфазное равновесие при сорбции хлорфенолов на покрытии, выполненном из 1, 2, 3-трис/β-цианэтокси/пропана. Сокращение времени анализа происходит также за счет быстрой регенерации пленки. Улучшаются экологические условия при формировании пленочного покрытия сенсора, в предлагаемом способе рекомендуется менее токсичный растворитель - ацетон (по прототипу - н-буганол).
Примеры осуществления способа
Пример 1
Газовую смесь, содержащую хлорфенолы и фенол в соотношении концентраций 1:1, вводили в поток газа-носителя (аргон, воздух) и пропускали через ячейку детектирования, содержащую пьезокварцевый сенсор, модифицированный 1, 2, 3-трис/β-цианэтокси/пропаном, со скоростью (3,3-3,5) х 10-5 м3/с. В качестве пьезокварцевого сенсора применяли серийно выпускаемый пьезокварцевый резонатор АТ-среза (частота колебаний 8-9,5 МГц), на электроды которого наносили 1 мкл раствора 1, 2, 3-трис/β-цианэтокси/пропана в ацетоне (с концентрацией 10 мг/мл). Для испарения растворителя до постоянной массы пленки покрытия пьезокварцевый сенсор высушивали при 65oС. Масса пленки после испарения растворителя составляла 10 мкг. Регенерацию пленки пьезокварцевого сенсора после каждого определения осуществляли путем пропускания через ячейку детектирования чистого газа-носителя. Определение концентрации хлорфенолов в воздухе осуществляли по градуировочному графику, построенному с применением стандартных газовых смесей.
Коэффициент распределения равняется KD=2,7; коэффициент селективности определения хлорфенолов в присутствии фенола составляет КA/B=10,5.
Пример 2
Газовую смесь, содержащую хлорфенолы и фенол в соотношении концентраций 1:10, вводили в поток газа-носителя (аргон, воздух) и пропускали через ячейку детектирования, содержащую пьезокварцевый сенсор, модифицированный 1, 2, 3-трис/β-цианэтокси/пропаном, со скоростью (3,3÷3,5) x 10-5 м3/с. Масса пленки после испарения растворителя соответствовала 10 мкг. Далее аналогично примеру 1.
КD=2,6; КA/B=10,3.
Пример 3
Газовую смесь, содержащую хлорфенолы и фенол в соотношении концентраций 1: 100, вводили в поток газа-носителя (аргон, воздух) и пропускали через ячейку детектирования, содержащую пьезокварцевый сенсор, модифицированный 1, 2, 3-трис/β-цианэтокси/пропаном, со скоростью (3,3÷3,5) x 10-5 м3/с. Масса пленки после испарения растворителя соответствовала 10 мкг. Далее аналогично примеру 1.
КD=2,3; KA/B=10,0.
Пример 4
Газовую смесь, содержащую хлорфенолы и фенол в соотношении концентраций 1: 200, вводили в поток газа-носителя (аргон, воздух) и пропускали через ячейку детектирования, содержащую пьезокварцевый сенсор, модифицированный 1, 2, 3-трис/β-цианэтокси/пропаном, со скоростью (3,3÷3,5) x 10-5 м3/с. Масса пленки после испарения растворителя соответствовала 10 мкг. Далее аналогично примеру 1.
КD=2,3; KA/B=10,0.
Пример 5
Газовую смесь, содержащую хлорфенолы и фенол в соотношении концентраций 1: 500, вводили в поток газа-носителя (аргон, воздух) и пропускали через ячейку детектирования, содержащую пьезокварцевый сенсор, модифицированный 1, 2, 3-трис/β-цианэтокси/пропаном, со скоростью (3,3÷3,5) x 10-5 м3/с. Масса пленки после испарения растворителя соответствовала 10 мкг. Далее аналогично примеру 1.
КD=2,3; KA/B=10,0.
Пример 6
Газовую смесь, содержащую хлорфенолы и фенол в соотношении концентраций 1: 1000, вводили в поток газа-носителя (аргон, воздух) и пропускали через ячейку детектирования, содержащую пьезокварцевый сенсор, модифицированный 1, 2, 3-трис/β-цианэтокси/пропаном, со скоростью (3,3÷3,5) x 10-5 м3/с. Масса пленки после испарения растворителя соответствовала 10 мкг. Далее аналогично примеру 1.
KD=1,8; KA/B=1,5.
При соотношении концентраций хлорфенолов и фенола в газовой смеси, равном 1: 1000, происходит существенное снижение чувствительности и селективности определения. Способ не осуществим, так как невозможно определение хлорфенолов в присутствии тысячекратного избытка фенола.
Пример 7
Газовую смесь, содержащую хлорфенолы и фенол в соотношении концентраций 1: 10, вводили в поток газа-носителя (аргон, воздух) и пропускали через ячейку детектирования, содержащую пьезокварцевый сенсор, модифицированный 1, 2, 3-трис/β-цианэтокси/пропаном, со скоростью (3,3÷3,5) x 10-5 м3/с. Масса пленки после испарения растворителя соответствовала 11 мкг. Далее аналогично примеру 1.
КD=2,6; KA/B=10,3.
Пример 8
Газовую смесь, содержащую хлорфенолы и фенол в соотношении концентраций 1: 10, вводили в поток газа-носителя (аргон, воздух) и пропускали через ячейку детектирования, содержащую пьезокварцевый сенсор, модифицированный 1, 2, 3-трис/β-цианэтокси/пропаном, со скоростью (3,3÷3,5) x 10-5 м3/с. Масса пленки после испарения растворителя соответствовала 12 мкг. Далее аналогично примеру 1.
KD=2,6; KA/B=10,3.
Пример 9
Газовую смесь, содержащую хлорфенолы и фенол в соотношении концентраций 1: 10, вводили в поток газа-носителя (аргон, воздух) и пропускали через ячейку детектирования, содержащую пьезокварцевый сенсор, модифицированный 1, 2, 3-трис/β-цианэтокси/пропаном, со скоростью (3,3÷3,5) x 10-5 м3/с. Масса пленки после испарения растворителя соответствовала 14 мкг. Далее аналогично примеру 1.
КD=1,0; KA/B=10,3.
При применении массы пленки свыше 12 мкг происходит снижение чувствительности определения хлорфенолов.
Пример 10
Газовую смесь, содержащую хлорфенолы и фенол в соотношении концентраций 1: 10, вводили в поток газа-носителя (аргон, воздух) и пропускали через ячейку детектирования, содержащую пьезокварцевый сенсор, модифицированный 1, 2, 3-трис/β-цианэтокси/пропаном, со скоростью (3,3÷3,5) x 10-5 м3/с. Масса пленки после испарения растворителя соответствовала 8 мкг. Далее аналогично примеру 1.
KD=1,0; KA/B=10,3.
Не происходит существенного повышения чувствительности по сравнению с прототипом.
Пример 11
Газовую смесь, содержащую хлорфенолы и фенол в соотношении концентраций 1: 10, вводили в поток газа-носителя (аргон, воздух) и пропускали через ячейку детектирования, содержащую пьезокварцевый сенсор, модифицированный 1, 2, 3-трис/β-цианэтокси/пропаном, со скоростью (3,3÷3,5) x 10-5 м3/с. Масса пленки после испарения растворителя соответствовала 10 мкг. Далее аналогично примеру 1.
КD=2,4; KA/B=10,0.
Осуществление способа определения хлорфенолов в воздухе в присутствии фенола при скорости, регламентируемой прототипом, не приводит к существенному увеличению чувствительности и селективности определения хлорфенолов, однако в 2 раза удлиняет время проведения анализа.
Сравнительная характеристика известного и предлагаемого способа приведена в таблице.
Изобретение относится к газовому анализу органических соединений. Технический результат - повышение чувствительности и селективности способа, а также сокращение продолжительности анализа. Сущность: предложен способ определения хлорфенолов в присутствии фенола с применением пьезокварцевого резонатора, электроды которого покрывают пленкой на основе 1,2,3-трис/β-цианэтокси/пропана, массой 10-12 мкг. Газовую смесь, содержащую хлорфенолы и фенол, вводят в поток газа-носителя и пропускают через ячейку детектирования со скоростью (3,3-3,5)•10-5 м3/с. Определение ведут по изменению частоты колебаний пьезокварцевого сенсора при сорбции хлорфенола. 1 табл.
Способ определения хлорфенолов в воздухе в присутствии фенола, включающий введение газовой смеси, содержащей хлорфенол и фенол, в поток газа-носителя, пропускание газовой смеси, введенной в поток газа-носителя, через ячейку детектирования, содержащую пьезокварцевый сенсор, и определение содержания хлорфенолов по градуировочному графику, отличающийся тем, что в качестве покрытия пьезокварцевого сенсора применяют пленку на основе 1,2,3-трис/β-цианэтокси/пропана массой 10-12 мкг, а скорость газа-носителя, проходящего через ячейку детектирования, составляет (3,3-3,5)х10-5 м3/с.
КУМЧЕНКО Т.А | |||
и др | |||
Определение фенола в воздухе методом пьезокварцевого микровзвешивания | |||
- Аналитическая химия, 1999, т | |||
Видоизменение прибора для получения стереоскопических впечатлений от двух изображений различного масштаба | 1919 |
|
SU54A1 |
Способ получения кодеина | 1922 |
|
SU178A1 |
КОРЕНМАН Я.И | |||
Определение фенола и его алкилпроизводных в воздухе с применением пьезокварцевого сенсора | |||
- Аналитическая химия, 1997, т | |||
Устройство для устранения мешающего действия зажигательной электрической системы двигателей внутреннего сгорания на радиоприем | 1922 |
|
SU52A1 |
Способ получения древесного угля | 1921 |
|
SU313A1 |
RAJAKOVIC L.V | |||
et al, Sensetivity of modified bulk acoustic waves for the detection of phenols in the vaporoushase | |||
Ana l | |||
Chim, Acta, 1995, V | |||
Способ изготовления фасонных резцов для зуборезных фрез | 1921 |
|
SU318A1 |
Способ очищения сернокислого глинозема от железа | 1920 |
|
SU47A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ФЕНОЛА В ВОЗДУХЕ | 1996 |
|
RU2117285C1 |
Авторы
Даты
2002-07-10—Публикация
2000-07-03—Подача