НИЗКОЛЕГИРОВАННАЯ СТАЛЬ Российский патент 2003 года по МПК C22C38/46 C22C38/58 

Описание патента на изобретение RU2200768C2

Изобретение относится к области металлургии, а именно к составам экономнолегированных сталей, используемых для изготовления металлических конструкций (строительных, мостовых, шахтных крепей и др.).

Низколегированная сталь, используемая для изготовления металлических конструкций, должна сочетать высокие прочностные, пластические и вязкостные свойства при низких температурах, не обладать склонностью к трещинообразованию при горячем пластическом деформировании. Кроме того, толстые листы из нее должны иметь высокие и стабильные свойства в направлении толщины.

Известна низколегированная сталь [1], имеющая следующий химический состав, мас.%:
Углерод - 0,15-0,35
Кремний - 0,15-1,0
Марганец - 0,4-1,5
Ванадий - 0,04-0,18
Ниобий - 0,008-0,1
Алюминий - 0,02-0,15
РЗМ - 0,002-0,2
Железо - Остальное
Недостатки известной стали состоят в том, что она имеет низкие показатели относительного удлинения и ударной вязкости при температуре испытания -40oС, низкие механические свойства в направлении толщины горячекатаного листа.

Известна также низколегированная сталь [2], имеющая следующий химический состав, мас.%:
Углерод - 0,08-0,16
Кремний - 0,17-0,37
Марганец - 1,40-1,70
Ванадий - 0,06-0,12
Ниобий - 0,06-0,12
Алюминий - 0,015-0,04
Сера - 0,015-0,035
Фосфор - 0,010-0,030
Бор - 0,0008-0,004
Церий - 0,005-0,01
Железо - Остальное
Данная сталь также имеет недостаточную пластичность и ударную вязкость, толстые листы из нее не выдерживают холодный изгиб на 120o без образования трещин.

Наиболее близкой по своему химическому составу и свойствам к предлагаемой является низколегированная сталь ([3] - прототип), содержащая, мас.%:
Углерод - 0,10-0,18
Марганец - 1,2-1,7
Кремний - 0,4-0,7
Хром - 0,5-1,0
Алюминий - 0,04-0,10
Ванадий - 0,05-0,15
Титан - 0,02-0,06
Азот - 0,010-0,022
Медь - 0,2-0,5
Цирконий - 0,005-0,10
Железо - Остальное
Недостатки известной стали состоят в ее низкой пластичности и ударной вязкости. Кроме того, при горячей прокатке толстых листов на них образуются трещины, листы имеют осевую рыхлость и несплошности, что приводит к снижению и разбросу значений показателя относительного сужения ψz в Z-направлении (в направлении толщины листа).

Техническая задача, решаемая изобретением, состоит в повышении пластичности и ударной вязкости низколегированной стали, свойств в Z-направлении толстых листов при одновременном уменьшении ее склонности к трещинообразованию при горячем пластическом деформировании.

Для решения этой технической задачи низколегированная сталь, содержащая углерод, марганец, кремний, хром, алюминий, ванадий, азот, медь и железо, дополнительно содержит никель и кальций при следующем соотношении компонентов, мас.%:
Углерод - 0,12-0,18
Марганец - 1,0-1,8
Кремний - 0,4-0,7
Хром - 0,4-0,8
Алюминий - 0,01-0,05
Ванадий - 0,04-0,08
Азот - 0,009-0,015
Медь - 0,1-0,4
Никель - 0,01-0,34
Кальций - 0,001-0,05
Железо - Остальное
Сопоставление известного состава низколегированной стали, принятой в качестве прототипа [3], и предложенной показывает, что содержания в них углерода, марганца, кремния, хрома, алюминия, ванадия, меди полностью или частично взаимно перекрываются. Предложенная низколегированная сталь содержит меньше азота, в нее не входят титан и цирконий. Но она дополнительно содержит 0,01-0,34% никеля и 0,001-0,05% кальция. За счет этого повышается пластичность и ударная вязкость, свойства толстых листов в Z-направлении, уменьшается склонность низколегированной стали к трещинообразованию при горячем пластическом деформировании.

Углерод в низколегированной стали предложенного состава определяет ее прочность. Снижение содержания углерода менее 0,12% приводит к снижению ее прочности ниже допустимого уровня. Увеличение содержания углерода сверх 0,18% ухудшает пластичность и вязкостные свойства.

Марганец введен для раскисления и повышения прочности. Раскисляющее действие марганца описывает химическая реакция
FeO+Мn-->MnO+Fe.

При содержании марганца менее 1,0% имеет место снижение прочностных свойств. Увеличение содержания этого элемента более 1,8% ухудшает пластичность низколегированной стали до δ5<14%, что недопустимо.

Кремний раскисляет и упрочняет низколегированную сталь, повышает ее механические свойства. Раскисление стали кремнием протекает по реакции
2FeO+Si-->2Fe+SiO2.

При содержании кремния менее 0,4% прочность низколегированной стали недостаточна. Увеличение содержания кремния более 0,7% приводит к возрастанию количества силикатных включений, снижает ударную вязкость и пластичность.

Хром повышает прочностные и вязкостные свойства низколегированной стали. При содержании хрома более 0,8% имеет место рост карбидов хрома, в результате прочность стали выше допустимой, горячекатаный лист не выдерживает испытания на холодный загиб. При содержании хрома меньше 0,4% снижается прочность и ударная вязкость ниже допустимого уровня.

Алюминий является раскисляющим и модифицирующим элементом. При содержании алюминия менее 0,01% его воздействие проявляется слабо, низколегированная сталь имеет низкие механические свойства. Увеличение содержания алюминия более 0,05% приводит к графитизации низколегированной стали, потере прочности и пластичности.

Ванадий введен в качестве карбидообразующего элемента. Измельчая зерно микроструктуры, он повышает прочность и вязкость низколегированной стали. При содержании ванадия менее 0,04% его положительное воздействие проявляется слабо. Увеличение содержания ванадия более 0,08% оказалось нецелесообразным, так как не приводило к дальнейшему повышению свойств.

Азот в предложенной низколегированной стали является сильным аустенитообразующим элементом. Соединяясь с ванадием, алюминием и железом, он образует нитриды, которые упрочняют сталь и способствуют получению оптимальной микроструктуры. Увеличение содержания азота более 0,015% приводит к понижению ударной вязкости при отрицательных температурах, а снижение его содержания менее 0,009%, во-первых, разупрочняет низколегированную сталь, а во-вторых, существенно удорожает ее производство.

Медь введена для повышения устойчивости аустенита, коррозионной стойкости, увеличения закаливаемости и прокаливаемости низколегированной стали. Увеличение содержания меди более 0,4 приводит к графитизации низколегированной стали, которая снижает комплекс механических свойств. Уменьшение содержания меди менее 0,1% ухудшает свойства низколегированной стали после термического улучшения из-за недостаточной прокаливаемости, понижает ее коррозионную стойкость.

Никель повышает прочность и пластичность низколегированной стали, улучшает прокаливаемость, повышает ударную вязкость. Помимо этого, в низколегированной стали предложенного состава в присутствии кальция он проявляет новые свойства, состоящие в повышении свойств толстых листов в Z-направлении, уменьшении ее склонности к трещинообразованию при горячем пластическом деформировании - листовой прокатке. Увеличение содержания никеля более 0,34% упрочняет низколегированную сталь выше допустимого уровня. Уменьшение концентрации этого элемента менее 0,01% приводит к понижению свойств толстых листов в Z-направлении и трещинообразованию, ухудшению вязкостных свойств.

Кальций оказывает модифицирующее действие, что позволяет (в присутствии никеля) повысить свойства толстых листов в Z-направлении, уменьшить склонность к трещинообразованию при горячем пластическом деформировании. При содержании кальция менее 0,001% его положительное воздействие проявляется слабо, толстые листы имеют низкие свойства в Z-направлении, трещины и несплошности. Увеличение содержания кальция более 0,05% приводит к чрезмерному росту неметаллических включений, снижению пластичности и ударной вязкости низколегированной стали.

В табл. 1 приведен химический состав низколегированных сталей с различным содержанием легирующих элементов, а в табл. 2 - результаты испытаний свойств горячекатаных листов из этих сталей.

Из табл. 1 и 2 следует, что предложенная низколегированная сталь (составы 2-4) имеет наиболее высокие показатели пластичности и ударной вязкости. Толстые листы имеют высокие и стабильные свойства в Z-направлении, не склонны к трещинообразованию. В случаях запредельных значений концентрации легирующих элементов (варианты 1 и 5) пластические и вязкостные свойства ухудшаются, из-за осевой рыхлости ухудшаются свойства толстых листов в Z-направлении, при горячем пластическом деформировании не исключено образование трещин. Также более низкие пластические и вязкостные свойства присущи стали-прототипу (вариант 6), толстые листы из которой имеют низкие свойства в Z-направлении и поражены трещинами.

Технико-экономические преимущества предложенной низколегированной стали заключаются в том, что дополнительное введение в ее состав 0,01-0,34% никеля и 0,001-0,05% кальция при регламентированной концентрации остальных легирующих элементов обеспечивает формирование благоприятных микроструктуры и фазового состава, за счет чего достигается повышение пластических и вязкостных свойств, свойств в Z-направлении толстых листов при одновременном снижении склонности к трещинообразованию при горячем пластическом деформировании. Поэтому низколегированная сталь может быть использована для изготовления металлоконструкций различного назначения.

В качестве базового объекта принята сталь-прототип. Использование предложенной стали позволит повысить рентабельности производства металлоконструкций на 8-10%.

Источники информации
1. Авт.свид. СССР 753924, МПК С 22 С 38/12, 1980 г.

2. Авт.свид. СССР 1523589, МПК С 22 С 38/12, 1989 г.

3. Авт.свид. СССР 595416, МПК С 22 С 38/28, 1978 г. - прототип.

Похожие патенты RU2200768C2

название год авторы номер документа
НИЗКОЛЕГИРОВАННАЯ СТАЛЬ 2004
  • Никитин В.Н.
  • Гейер В.В.
  • Ламухин А.М.
  • Попова Т.Н.
  • Маслюк В.М.
  • Голованов А.В.
  • Никитин М.В.
  • Баранов В.П.
  • Дубинин И.В.
  • Рослякова Н.Е.
  • Киселев С.И.
  • Кураш Валентин Станиславович
  • Трайно А.И.
RU2255999C1
СТАЛЬ 2002
  • Ламухин А.М.
  • Никитин В.Н.
  • Голованов А.В.
  • Попова Т.Н.
  • Маслюк В.М.
  • Кувшинников О.А.
  • Зиборов А.В.
  • Балдаев Б.Я.
  • Никитин М.В.
  • Баранов В.П.
  • Белов Г.А.
  • Колесников В.Ю.
  • Трайно А.И.
  • Пименова Т.В.
  • Кураш Валентин Станиславович
  • Киселев С.И.
RU2223343C1
СТАЛЬ 2003
  • Кувшинников О.А.
  • Никитин В.Н.
  • Мариев Павел Лукьянович
  • Ложечко Л.Б.
  • Маслюк В.М.
  • Попова Т.Н.
  • Баранов В.П.
  • Никитин М.В.
  • Трайно А.И.
  • Кузнецов А.А.
  • Киселев С.И.
RU2243288C1
ВЫСОКОПРОЧНАЯ ХЛАДОСТОЙКАЯ БЕЙНИТНАЯ СТАЛЬ 2014
  • Новоселов Сергей Иванович
  • Шеремет Наталия Павловна
  • Огольцов Алексей Андреевич
  • Попова Анна Александровна
  • Пешеходов Владимир Александрович
RU2555306C1
СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2001
  • Ильинский В.И.
  • Попова Т.Н.
  • Голованов А.В.
  • Ламухин А.М.
  • Чурюлин В.А.
  • Гейер В.В.
  • Трайно А.И.
  • Зиборов А.В.
  • Балдаев Б.Я.
  • Эфрон Л.И.
  • Морозов Ю.Д.
  • Квасникова О.О.
  • Демидова А.А.
RU2201972C2
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНОЙ ТОЛСТОЛИСТОВОЙ СТАЛИ 2013
  • Никитин Валентин Николаевич
  • Настич Сергей Юрьевич
  • Филиппов Георгий Анатольевич
  • Морозов Юрий Дмитриевич
  • Маслюк Владимир Михайлович
  • Никитин Михаил Валентинович
  • Трайно Александр Иванович
RU2533244C1
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВОЙ СТАЛИ С ВЫСОКОЙ ИЗНОСОСТОЙКОСТЬЮ 2013
  • Никитин Валентин Николаевич
  • Настич Сергей Юрьевич
  • Филиппов Георгий Анатольевич
  • Морозов Юрий Дмитриевич
  • Маслюк Владимир Михайлович
  • Никитин Михаил Валентинович
  • Трайно Александр Иванович
RU2533469C1
СТАЛЬ 1995
  • Дьяконова В.С.
  • Тишков В.Я.
  • Масленников В.А.
  • Попова Т.Н.
  • Шадрунова С.И.
  • Шурыгин А.В.
  • Сысолятин В.И.
  • Бурман П.Н.
  • Шафран С.А.
  • Шкатова А.М.
RU2075534C1
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНОЙ ЛИСТОВОЙ СТАЛИ 2010
  • Никитин Валентин Николаевич
  • Шахпазов Евгений Христофорович
  • Шлямнев Анатолий Петрович
  • Маслюк Владимир Михайлович
  • Трайно Александр Иванович
  • Баранов Владимир Павлович
  • Голованов Александр Васильевич
  • Попова Анна Александровна
RU2433191C1
СТАЛЬ ДЛЯ МАГИСТРАЛЬНЫХ НЕФТЕ- И ГАЗОПРОВОДОВ 2001
  • Степанов А.А.
  • Ламухин А.М.
  • Зинченко С.Д.
  • Дьяконова В.С.
  • Голованов А.В.
  • Гуркин М.А.
  • Рослякова Н.Е.
  • Чикалов С.Г.
  • Комаров А.И.
  • Седых А.М.
  • Степанцов Э.В.
  • Роньжин А.И.
  • Шишов А.А.
  • Тетюева Т.В.
  • Зикеев В.Н.
  • Клыпин Б.А.
RU2180016C1

Иллюстрации к изобретению RU 2 200 768 C2

Реферат патента 2003 года НИЗКОЛЕГИРОВАННАЯ СТАЛЬ

Изобретение относится к области металлургии, а именно к составам низколегированных сталей, используемых для изготовления металлических конструкций (строительных, мостовых, шахтных крепей и др.). Техническим результатом изобретения является повышение пластичности и ударной вязкости низколегированной стали, свойств в Z-направлении (в направлении толщины листа) толстых листов при одновременном уменьшении склонности стали к трещинообразованию при горячем пластическом деформировании. Для решения этой задачи низколегированная сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,12-0,18; марганец 1,0-1,8; кремний 0,4-0,7; хром 0,4-0,8; алюминий 0,01-0,05; ванадий 0,04-0,08; азот 0,009-0,015; медь 0,1-0,4; никель 0,01-0,34; кальций 0,001-0,05; железо - остальное. 2 табл.

Формула изобретения RU 2 200 768 C2

Низколегированная сталь, содержащая углерод, марганец, кремний, хром, алюминий, ванадий, азот, медь и железо, отличающаяся тем, что она дополнительно содержит никель и кальций при следующем соотношении компонентов, мас. %:
Углерод - 0,12-0,18
Марганец - 1,0-1,8
Кремний - 0,4-0,7
Хром - 0,4-0,8
Алюминий - 0,01-0,05
Ванадий - 0,04-0,08
Азот - 0,009-0,015
Медь - 0,1-0,4
Никель - 0,01-0,34
Кальций - 0,001-0,05
Железо - Остальное

Документы, цитированные в отчете о поиске Патент 2003 года RU2200768C2

Низколегированная сталь 1976
  • Никольский Олег Игоревич
  • Никитин Валентин Николаевич
  • Литвиненко Денис Ануфриевич
  • Насибов Али Гасан Оглы
  • Плахотникова Любовь Ивановна
  • Некрасов Виктор Григорьевич
  • Зеличенок Борис Юрьевич
  • Зорин Владимир Никитович
  • Семенча Павел Васильевич
  • Лактионов Иван Евтеевич
SU595416A1
Конструкционная сталь 1977
  • Зикеев Владимир Николаевич
  • Голованенко Сергей Александрович
  • Попова Людмила Васильевна
  • Литвиненко Денис Ануфриевич
  • Янковский Владимир Михайлович
  • Навныко Павел Петрович
  • Исаев Юрий Гасанович
  • Афанасьев Владимир Петрович
  • Григорьева Галина Ильинична
  • Петров Виктор Андреевич
  • Лубенский Александр Петрович
SU753924A1
Сталь 1988
  • Курашвили Спартак Ясонович
  • Мирианашвили Иван Владимирович
  • Журули Мераб Александрович
  • Гоголадзе Гурам Иванович
  • Чаганава Зураб Давидович
  • Ломашвили Анзор Николаевич
SU1523589A1
СТАЛЬ "КАРТЭКС 400" 1996
  • Лебедев В.В.
  • Сафронова А.А.
  • Ионов В.А.
  • Шарапов А.Ю.
  • Борисов В.И.
  • Дурынин В.А.
  • Зацепин В.Г.
  • Ривкин С.И.
RU2124575C1
СТАЛЬ, ИМЕЮЩАЯ ВЫСОКУЮ УДАРНУЮ ВЯЗКОСТЬ В ЗОНЕ ТЕРМИЧЕСКОГО ВОЗДЕЙСТВИЯ ПРИ СВАРКЕ 1997
  • Такуя Хара
  • Хитоси Асахи
  • Хироси Тамехиро
  • Риудзи Уемори
  • Наоки Сайто
RU2135622C1
DE 4227154 А1, 24.02.1994
US 4521258, 04.06.1985.

RU 2 200 768 C2

Авторы

Ламухин А.М.

Никитин В.Н.

Чурюлин В.А.

Зиборов А.В.

Попова Т.Н.

Маслюк В.М.

Колесников В.Ю.

Столяров В.И.

Никитин М.В.

Балдаев Б.Я.

Голованов А.В.

Рябинкова В.К.

Северинец И.Ю.

Трайно А.И.

Даты

2003-03-20Публикация

2001-02-19Подача