КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА Российский патент 2003 года по МПК B01J23/34 B01J23/18 B01J23/10 B01J23/02 C01B21/22 C01B21/26 

Описание патента на изобретение RU2212932C1

Изобретение относится к катализаторам и способам получения закиси азота (N2O) путем окисления аммиака кислородом или кислородсодержащим газом. Закись азота находит широкое применение в различных областях: в полупроводниковой, парфюмерной, медицинской и пищевой промышленности. В последние годы появилась еще одна область применения - каталитическое окисление закисью азота бензола в фенол.

Потребности в закиси азота в различных сферах обусловили повышенный интерес к разработке различных методов ее получения. Известно несколько способов получения закиси азота, среди которых можно выделить ряд каталитических методов.

1. Каталитическое восстановление монооксида азота (NO) либо оксидом углерода (СО), либо водородом, либо смесью монооксида углерода и водорода (синтез-газ) в присутствии гомогенных катализаторов [ЕР 54965, С 01 В 21/22, 1982].

2. Каталитическое восстановление монооксида азота либо монооксидом углерода, либо водородом, либо смесью оксида углерода и водорода (синтез-газ) в присутствии гетерогенных катализаторов, в качестве которых используют благородные металлы платиновой группы, нанесенные на носители, например (1-5) мас.% Ru-Pt/Al2O3 (SiO2, ZrO2, TiO2) [EP 036761, С 01 В 21/22, 2000].

3. Каталитическое окисление аммиака кислородом в присутствии гетерогенных катализаторов на основе оксидов металлов.

Известен ряд оксидных катализаторов для получения закиси азота путем окисления аммиака, в частности, на основе диоксида марганца
MnO2-Bi2O3 [Pat. DE, 503200, 1930; Pat. CSR, 158091, 1973];
МnО2-СuО [ЕР 799792, С 01 В 21/22, 1997];
MnO2-Bi2O3-Fe2O3 [Pat. DE, 503200,1930; ЕР 799792, C 01 B 21/22, 1997];
MnO2-CoO-NiO [ЕР 799792, C 01 B 21/22, 1997].

Известен ряд катализаторов, не содержащих оксида марганца, а именно: Со3O4-Аl2O3 [Справочник: Каталитические свойства веществ. / Под ред. В.А.Ройтера, 1968]; Рr2О3-Nd2O3-CeO2 [ЕР 799792, C 01 B 21/22, 1997].

Наиболее близким к предлагаемому катализатору является катализатор для получения закиси азота, в состав которого входят оксиды марганца, висмута и алюминия, при содержании компонентов, мас.%: (5,0÷35,0) МnO2 - (4,5÷30,0) Вi2O3 - (90,5÷35) Аl2O3 [Пат. РФ 2102135, B 01 J 23/18, 1998; WO 9825698, B 01 J 23/18, 1998]. Катализатор применяют для получения закиси азота путем окисления аммиака кислородсодержащим газом. В частности, на катализаторе, содержащем, мас.%: 13 МnО2 - 11 Bi2O3 - 76 Аl2O3, при обработке реакционной смеси состава 9 об.% NН3 - 9 об.% O2 - 82 об.% Не, при времени контакта 0,7 с и температуре реакции 350oС получают следующие показатели процесса: степень превращения аммиака 99,2%, селективность по N2O и по NO (SNO) - 87 и 2,8% соответственно.

К недостаткам этого катализатора относится сравнительно высокая нижняя граница содержания оксидов МnO2 и Вi2O3 в составе катализатора, не менее 9,5 мас.%, для получения необходимой селективности по N2O. Известный катализатор показывает достаточно высокий выход NO в процессе окисления аммиака, который является вредной примесью для последующего использования целевого продукта. Известный катализатор имеет достаточно высокий насыпной вес в пределах 0,9-1,4 г/см3, что затрудняет его использование в аппаратах кипящего слоя из-за невозможности реализации турбулентного режима работы.

Изобретение решает задачу получения активного и селективного катализатора в отношении закиси азота путем окисления аммиака кислородом или кислородсодержащим газом, в том числе с пониженным содержанием активного компонента.

Задача решается катализатором получения закиси азота путем окисления аммиака кислородом или кислородсодержащим газом, включающим марганецсодержащий активный компонент и оксид или смесь оксидов щелочноземельного металла. Катализатор содержит в качестве активного компонента композицию, представляющую собой смешанную аморфную оксидную фазу нестехиометрического состава MnRxOy (0,05≤х≤2,24; 2,08≤у≤5,36), где R - висмут и/или лантаноид, или смесь аморфной оксидной фазы состава MnRxOy и кристаллической марганецсодержащей фазы. Содержание компонентов в катализаторе, мас.%:
MnRxOy или смесь MnRxOy и кристаллической марганецсодержащей фазы 0,75÷65,0, оксид или смесь оксидов щелочноземельного металла 35,0-99,25.

В качестве кристаллической марганецсодержащей фазы катализатор содержит оксид марганца Мn2О3, и/или соединение состава Bi2Mn4O10, и/или смешанное соединение со структурой искаженного перовскита Mn1-xL1+хО3, где L - лантаноид, х - 0÷0,596. Содержание кристаллической марганецсодержащей фазы составляет, мас.%: 0,005-25,0.

Катализатор содержит оксид или смесь оксидов щелочноземельных металлов, выбранных из ряда: Mg, Ca, Sr, Ba.

Катализатор содержит лантаноид, выбранный из ряда: лантан, иттрий, церий, самарий.

Задача решается также способом получения закиси азота путем окисления аммиака кислородом или кислородсодержащим газом в присутствии марганецсодержащего катализатора вышеуказанного состава, процесс проводят при температуре 250-450oС.

Катализатор готовят пропиткой оксида щелочноземельного металла азотнокислым раствором солей марганца, висмута и/или лантаноида, с последующими стадиями сушки при 120-150oС и прокаливания при 400-750oС. Либо осаждением с последующим смешением и формовкой компонентов катализатора в гранулы нужной формы с последующими стадиями сушки при 120-150oС и прокаливания при 400-750oС. Готовые катализаторы после прокалки по данным РФА не содержат в своей структуре фаз оксидов МnO2, Вi2O3 и Lа2О3, наблюдается присутствие характерного "галло" смешанной аморфной фазы MnBixOy и/или MnLaxOz, и/или MnBixLayOz. В случае прокалки катализаторов при температурах выше 550-600oС в структуре катализатора может наблюдаться образование кристаллических фаз оксида Мn2O3, смешанного соединения Bi2Mn4O10 и смешанного соединения со структурой искаженного перовскита Mn1-xL1+хО3, где L - лантаноид, х - 0÷0,596.

Полученные катализаторы характеризуются достаточно высокой селективностью по N2O в реакции окисления аммиака кислородсодержащими смесями, даже для образцов с относительно низким содержанием активного компонента: смешанной аморфной Mn-R оксидной фазы; дают пониженный выход NO после реакции; могут иметь низкий насыпной вес. Так, при содержании активного компонента в катализаторе MnRxOy/MO, существенно меньшем, чем в катализаторе прототипа МnO2-Вi2O3/Аl2O3, селективность по закиси азота в реакции окисления аммиака на указанном выше катализаторе составляет 87-88% при температуре реакции 350-360oС.

Существенными отличительными признаками предлагаемого катализатора являются состав катализатора и структура активного компонента.

Каталитические свойства предлагаемых катализаторов в реакции окисления аммиака кислородсодержащими смесями исследуют в проточной установке и оценивают по селективности в целевой продукт N2O и на присутствие побочных примесей NO. Реакционную смесь состава: 8 об.% NН3, 9 об.% О2, Не - остальное, пропускают через слой катализатора фракционного состава 0,25-0,50 мм при объемной скорости 3600 ч-1. Температура реакции составляет 350oС. Состав исходной реакционной смеси и продуктов реакции анализируют хроматографически; концентрацию NO определяют с помощью анализатора ECOM-Omega (Австрия).

Сущность изобретения иллюстрируется следующими примерами (см. таблицу).

Пример 1. 60 г гранул носителя MgO пропитывают азотнокислым раствором, полученным растворением 39,59 г соли Mn(NO3)2•6H2O и 16,65 г соли Вi(NO3)3•5Н2O в 5% растворе НNО3. Влажные гранулы сушат под ИК сушилкой до сухого сыпучего состояния, затем сушат в сушильном шкафу при температуре 120oС в течение 4 часов. Затем образец прокаливают в печи при температуре 400-650oС в течение 6 часов. Полученный катализатор имеет состав, мас.%: 25,0 MnBi0,25O2,38 - 75,0 MgO. РФА образца показывает отсутствие в составе катализатора кристаллических фаз оксидов МnO2 и Вi2O3. Катализатор испытывают в реакции окисления аммиака кислородсодержащей смесью в тестовых условиях, описанных выше. Селективность по закиси азота и оксиду азота (SNO) составляет соответственно 87,4 и 1,4%.

Пример 2. 60,0 г гранул носителя MgO, содержащего 1,6 г СаО, пропитывают азотнокислым раствором, полученным растворением 39,59 г соли Мn(NО3)2•6Н2O и 13,32 г соли Вi(NО3)3•5Н2O и 1,6 г оксида La2O3 в 8% растворе НNО3. Влажные гранулы сушат под ИК сушилкой до сухого сыпучего состояния, затем сушат в сушильном шкафу при температуре 120oС в течение 4 часов. Затем образец прокаливают в печи при температуре 400-650oС в течение 6 часов. Полученный катализатор имеет состав, мас.%: 25,0 MnBi0,20La0,07O2,4 - 2,0 СаО - 73,0 MgO. РФА образца катализатора показывает отсутствие в составе катализатора кристаллических фаз оксидов МnO2 и Вi2O3. Катализатор испытывают в реакции окисления аммиака кислородсодержащей смесью в тестовых условиях, описанных выше. Селективность по закиси азота и оксиду азота (SNO) составляет соответственно 87,8 и 0,8%.

Пример 3. 60 г гранул носителя MgO пропитывают азотнокислым раствором, полученным растворением 20,48 г соли Мn(NO3)2•6Н2O, 6,45 г соли Вi(NО3)3•5Н2O и 0,69 г оксида Lа2О3 в 6% растворе НNО3. Влажные гранулы сушат под ИК сушилкой до сухого сыпучего состояния, затем сушат в сушильном шкафу при температуре 120oС в течение 4 часов. Затем образец прокаливают в печи при температуре 400-650oС в течение 6 часов. Полученный катализатор имеет состав, мас. %: 13,0 MnBi0,12La0,06O2,27 - 87,0 MgO. РФА образца катализатора показывает отсутствие в составе катализатора кристаллических фаз оксидов MnO2, Lа2О3 и Bi2O3. Катализатор испытывают в реакции окисления аммиака кислородсодержащей смесью в тестовых условиях, описанных выше. Селективность по закиси азота и оксиду азота (S) составляет соответственно 87,0 и 0,3%.

Пример 4. 60 г гранул носителя ВаО пропитывают азотнокислым раствором, полученным растворением 1.0 г соли Мn(NO3)2•6Н2O и 0,32 г соли Вi(NO3)3•5Н2O в 5% растворе НNО3. Влажные гранулы сушат под ИК сушилкой до сухого сыпучего состояния, затем сушат в сушильном шкафу при температуре 120oС в течение 4 часов. Затем образец прокаливают в печи при температуре 400-650oС в течение 6 часов. Полученный катализатор имеет состав, мас.%: 0,75 MnBi0,19O229 - 99,25 ВаО. РФА образца катализатора показывает отсутствие в составе катализатора кристаллических фаз оксидов МnO2 и Bi2O3. Катализатор испытывают в реакции окисления аммиака кислородсодержащей смесью в тестовых условиях, описанных выше. Селективность по закиси азота и оксиду азота (SNO) составляет соответственно 80,5 и 1,1%.

Пример 5. Суспензию, содержащую 33,0 г MgO, 115,46 г Mn(NO3)2•6H2O, 52,04 г Вi(NО3)3•5Н2O, 5 г Lа2O3 в азотнокислом растворе, нейтрализуют известковой водой до рН 7. Оставляют стоять в течение 30 мин и фильтруют. Влажный осадок формуют в гранулы и сушат на воздухе. Затем сушат в сушильном шкафу при 120-140oС и покаливают при 400-500oС в течение 4 часов. Полученный катализатор имеет состав, мас.%: 65,0 MnBi0,27La0,08O2,52 - 2,0 CaO - 33.0 MgO. РФА образца катализатора показывает отсутствие в составе катализатора кристаллических фаз оксидов МnO2 и Bi2O3. Катализатор испытывают в реакции окисления аммиака кислородсодержащей смесью в тестовых условиях, описанных выше. Селективность по закиси азота и оксиду азота (SNO) составляет соответственно 82,2 и 2,0%.

Пример 6. 60 г гранул носителя MgO пропитывают азотнокислым раствором, полученным растворением 29,69 г соли Mn(NO3)2•6H2O и 6,0 г оксида Lа2O3 в 8% растворе НNО3. Влажные гранулы сушат под ИК сушилкой до сухого сыпучего состояния, затем сушат в сушильном шкафу при температуре 120oС в течение 4 часов. Затем образец прокаливают в печи при температуре 400-500oС в течение 4 часов. Полученный катализатор имеет состав, мас.%: 20,0 МnLа0,36O2,54 - 80,0 MgO. РФА образца показал отсутствие в составе катализатора кристаллических фаз оксидов МnO2 и La2O3. Катализатор испытывают в реакции окисления аммиака кислородсодержащей смесью в тестовых условиях, описанных выше. Селективность по закиси азота и оксиду азота (SNO) составляет соответственно 85,4 и 0,8%.

Пример 7. 60 г гранул носителя MgO пропитывают азотнокислым раствором, полученным растворением 20,46 г соли Мn(NО3)2•6Н2O и 5,53 г оксида La2O3 в 8% растворе НNО3. Влажные гранулы сушат под ИК сушилкой до сухого сыпучего состояния, затем сушат в сушильном шкафу при температуре 120oС в течение 4 часов. Затем образец прокаливают в печи при температуре 400-550oС в течение 6 часов. Полученный катализатор имеет состав, мас.%: 10.0 МnLа0,36O2,54 - 10,0 МnLаО3 - 80,0 MgO. РФА образца показал отсутствие в составе катализатора кристаллических фаз оксидов МnO2 и La2O3. Катализатор испытывают в реакции окисления аммиака кислородсодержащей смесью в тестовых условиях, описанных выше. Селективность по закиси азота и оксиду азота (SNO) составляет соответственно 85,5 и 0,9%.

Пример 8. 60 г гранул носителя MgO пропитывают азотнокислым раствором, полученным растворением 42,23 г соли Мn(NО3)2•6Н2O и 15,32 г соли Вi(NО3)3•5Н2O в 5% растворе НNО3. Влажные гранулы сушат под ИК сушилкой до сухого сыпучего состояния, затем сушат в сушильном шкафу при температуре 120oС в течение 4 часов. Затем образец прокаливают в печи при температуре 400-650oС в течение 6 часов. Полученный катализатор имеет состав, мас.%: 23,0 MnBi0,25O2,38 - 2,0 Мn2O3 - 75,0 MgO. РФА образца показал отсутствие в составе катализатора кристаллических фаз оксидов МnO2 и Вi2O3. Катализатор испытывают в реакции окисления аммиака кислородсодержащей смесью в тестовых условиях, описанных выше. Селективность по закиси азота и оксиду азота (SNO) составляет соответственно 87,0 и 1,0%.

Пример 9. 60 г гранул носителя MgO пропитывают азотнокислым раствором, полученным растворением 40,2 г соли Мn(NО3)2•6Н2O и 16,65 г соли Вi(NО3)3•5Н2O в 5% растворе НNО3. Влажные гранулы сушат под ИК сушилкой до сухого сыпучего состояния, затем сушат в сушильном шкафу при температуре 120oС в течение 4 часов. Затем образец прокаливают в печи при температуре 400-700oС в течение 6 часов. Полученный катализатор имеет состав, мас.%: 20,0 MnBi0,25O2,38 - 1,58 Мn2O3 - 3,42 Bi2Mn4O10 - 75,0 MgO. РФА образца показал отсутствие в составе катализатора кристаллических фаз оксидов MnO2 и Вi2O3. Катализатор испытывают в реакции окисления аммиака кислородсодержащей смесью в тестовых условиях, описанных выше. Селективность по закиси азота и оксиду азота (SNO) составляет соответственно 86,8 и 0,8%.

Пример 10. 60 г гранул носителя MgO пропитывают азотнокислым раствором, полученным растворением 30,45 г соли Мn(NO3)2•6Н2O и 7.7 г оксида Lа2О3 в 8% растворе HNO3. Влажные гранулы сушат под ИК сушилкой до сухого сыпучего состояния, затем сушат в сушильном шкафу при температуре 120oС в течение 4 часов. Затем образец прокаливают в печи при температуре 400-650oС в течение 6 часов. Полученный катализатор имеет состав, мас.%: 10,0 MnLa0,14O2,21 - 12 МnLаО3 - 75,0 MgO. РФА образца показывает отсутствие в составе катализатора кристаллических фаз оксидов MnO2, Bi2O3 и Lа2O3, присутствие фазы МnLaО3 со структурой искаженного перовскита с параметрами а=5,520; с=13,380. Катализатор испытывают в реакции окисления аммиака кислородсодержащей смесью в тестовых условиях, описанных выше. Селективность по закиси азота и оксиду азота (SNO) составляет соответственно 85,8 и 1,0%.

Пример 11. 60 г гранул носителя MgO пропитывают азотнокислым раствором, полученным растворением 36,25 г соли Mn(NO3)2•6H2O и 10,73 г соли Вi(NO3)3•5Н2O и 3,49 г оксида Lа2О3 в 8% растворе HNО3. Влажные гранулы сушат под ИК сушилкой до сухого сыпучего состояния, затем сушат в сушильном шкафу при температуре 120oС в течение 4 часов. Затем образец прокаливают в печи при температуре 400-750oС в течение 6 часов. Полученный катализатор имеет состав, мас.%: 14,0 MnBi0,20La0,07O2,41 - 1,0 Мn2O3 - 5,0 Bi2Mn4O10 - 5,0 МnLаО3 - 75,0 MgO. РФА образца показывает отсутствие в составе катализатора кристаллических фаз оксидов МnО3 и Вi2O3, присутствие кристаллических фаз Мn2O3, Bi2Mn4O10 и фазы МnLаО3 со структурой искаженного перовскита (а= 5,520; с=13,380). Катализатор испытывают в реакции окисления аммиака кислородсодержащей смесью в тестовых условиях, описанных выше. Селективность по закиси азота и оксиду азота (SNO) составляет соответственно 84,6 и 0,8%.

Таким образом, предлагаемое изобретение позволяет снизить выход NO в процессе окисления аммиака, а также позволяет готовить катализаторы с пониженным содержанием активного компонента и с более низким насыпным весом на уровне 0,65-0,7 г/см3.

Похожие патенты RU2212932C1

название год авторы номер документа
КАТАЛИЗАТОР ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА И СПОСОБ 2002
  • Носков А.С.
  • Мокринский В.В.
RU2214865C1
КАТАЛИЗАТОР ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА И СПОСОБ 2002
  • Мокринский В.В.
  • Носков А.С.
  • Иванова А.С.
RU2211087C1
КАТАЛИЗАТОР ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА И СПОСОБ ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА 2002
  • Носков А.С.
  • Иванова А.С.
  • Мокринский В.В.
RU2216403C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА 2002
  • Мокринский В.В.
  • Носков А.С.
RU2213615C1
КАТАЛИЗАТОР ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА И СПОСОБ 2002
  • Мокринский В.В.
  • Иванова А.С.
  • Носков А.С.
RU2215577C1
КАТАЛИЗАТОР ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА И СПОСОБ 2002
  • Носков А.С.
  • Мокринский В.В.
  • Иванова А.С.
RU2212934C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА 2002
  • Носков А.С.
  • Мокринский В.В.
RU2214862C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА 2002
  • Мокринский В.В.
  • Носков А.С.
  • Иванова А.С.
RU2212933C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА 2002
  • Носков А.С.
  • Мокринский В.В.
  • Иванова А.С.
RU2219998C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА 2002
  • Мокринский В.В.
  • Носков А.С.
  • Славинская Е.М.
  • Золотарский И.А.
RU2214863C1

Иллюстрации к изобретению RU 2 212 932 C1

Реферат патента 2003 года КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА

Изобретение относится к катализаторам и способам получения закиси азота (N2O) путем окисления аммиака кислородом или кислородсодержащим газом. Закись азота находит широкое применение в различных областях народного хозяйства: в полупроводниковой, парфюмерной, медицинской и пищевой промышленности. Описаны катализатор и способ получения закиси азота путем окисления аммиака кислородом или кислородсодержащим газом, включающим марганецсодержащий активный компонент и оксид или смесь оксидов щелочно-земельного металла. Катализатор содержит в качестве активного компонента композицию, представляющую собой смешанную аморфную оксидную фазу нестехиометрического состава MnRхOу (0,05 ≤ х ≤ 2,24; 2,08 ≤ y ≤ 5,36), где R - висмут и/или лантаноид, или смесь аморфной оксидной фазы состава MnRхOу и кристаллической марганецсодержащей фазы. Процесс получения закиси азота путем окисления аммиака кислородом или кислородсодержащим газом в присутствии марганецсодержащего катализатора вышеуказанного состава проводят при 250-450oС. Технический результат - получение активного и селективного в отношении закиси азота катализатора с пониженным содержанием активного компонента. 2 с. и 4 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 212 932 C1

1. Катализатор для получения закиси азота путем окисления аммиака кислородом или кислородсодержащим газом, включающий марганецсодержащий активный компонент, отличающийся тем, что он содержит в качестве активного компонента композицию, представляющую собой смешанную аморфную оксидную фазу нестехиометрического состава
MnRхOу (0,05 ≤ х ≤ 2,24; 2,08 ≤ y ≤ 5,36),
где R - висмут и/или лантаноид,
или смесь аморфной оксидной фазы состава MnRхOу и кристаллической марганецсодержащей фазы, а также оксид или смесь оксидов щелочно-земельного металла при содержании компонентов, мас. %:
MnRхOу или смесь MnRхOу и кристаллической марганецсодержащей фазы - 0,75÷65,0
Оксид или смесь оксидов щелочноземельного металла - 35,0-99,25
2. Катализатор по п. 1, отличающийся тем, что в качестве кристаллической марганецсодержащей фазы он содержит оксид марганца Mn2O3, и/или соединение состава Bi2Mn4O10 и/или смешанное соединение со структурой искаженного перовскита Mn1-xL1+xO3,
где L - лантаноид;
х = 0÷0,596.
3. Катализатор по п. 1 или 2, отличающийся тем, что содержание кристаллической марганецсодержащей фазы составляет 0,005-25,0 мас. %. 4. Катализатор по любому из пп. 1-3, отличающийся тем, что он содержит оксид или смесь оксидов щелочноземельных металлов, выбранных из ряда: Mg, Са, Sr, Ва. 5. Катализатор по любому из пп. 1-4, отличающийся тем, что он содержит лантаноид, выбранный из ряда: лантан, иттрий, церий, самарий. 6. Способ получения закиси азота путем окисления аммиака кислородом или кислородсодержащим газом в присутствии марганецсодержащего катализатора, отличающийся тем, что процесс проводят при 250-450oС, а в качестве катализатора используют катализатор по любому из пп. 1-5.

Документы, цитированные в отчете о поиске Патент 2003 года RU2212932C1

КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА 1996
  • Мокринский В.В.
  • Славинская Е.М.
  • Носков А.С.
  • Золотарский И.А.
RU2102135C1
DE 3126675 A1, 05.08.1982
Устройство для управления процессом термообезмасливания парафина 1972
  • Шевцов Владимир Порфирьевич
  • Эмануилов Глеб Михайлович
  • Калинов Борис Петрович
  • Званский Самуил Яковлевич
  • Игнатенко Вячеслав Владимирович
  • Мингалиев Назип Ахматович
  • Мануилов Виктор Иванович
SU562567A1
US 4812300 A, 14.03.1989.

RU 2 212 932 C1

Авторы

Мокринский В.В.

Иванова А.С.

Носков А.С.

Даты

2003-09-27Публикация

2002-06-27Подача