Изобретение относится к получению синтез-газа, содержащего, в основном, Н2 и СО для производства спиртов или аммиака, процессов Фишера-Тропша и оксосинтеза.
Способ в соответствии с изобретением предпочтительно относится к переработке природного газа в синтез-газ с заданным мольным соотношением Н2/СО в диапазоне от 1,0 до 2,0.
Известны способы получения синтез-газа из природного газа, газовых смесей, содержащих Н2 и СО, на основе различных видов конверсии: кислородной конверсии или, как это принято в зарубежной технической литературе, некаталитического парциального окисления, автотермического реформинга, протекающего на катализаторе в реакторе шахтного типа и парового реформинга, проводимого в трубчатой печи с внешним обогревом труб (см. “Производство технологического газа для синтеза аммиака и метанола из углеводородных газов”. Изд. “Химия”, Москва, 1971, под ред. А.Г. Лейбуш).
При получении газа для синтеза метанола автотермический реформинг природного газа с добавлением СO2 проводится путем выполнения следующих стадий: сатурации с Н2О исходного природного газа, смешивания его с СО2 и подогрева до температуры 550-600°С в теплообменнике возвратным конвертированным газом и последующей конверсии парогазовой смеси исходного состава при следующих соотношениях: СO2:Н2О:CH4=0,2:0,9:1,0 в шахтном каталитическом реакторе с кислородом при соотношении О2:СН4=0,6:1,0.
Реакция протекает на никельсодержащем катализаторе (6% NiO на носителе из Аl2О3) при температуре 850-950°С. Полученный конвертированный газ после охлаждения в котле-утилизаторе, теплообменнике для подогрева исходной парогазовой смеси, водном скруббере проходит далее очистку от CO2 с использованием моноэтаноламинового раствора (МЭА) (18-20 мас.% МЭА) и подается далее на компрессию и синтез метанола.
К недостаткам приведенного способа можно отнести следующее:
1. В конвертированном газе после автотермической конверсии имеет место повышенное содержание СО2 (>9 об.%), что требует дальнейшей дополнительной очистки от СО2.
2. В конвертированном газе высоко содержание водорода и, следовательно, повышенное соотношение Н2/СО (>2,3), что приводит к повышенным расходам СО+Н2 на единицу продукции. При синтезе метанола требуется соотношение, так называемый “функционал” f=(H2-СO2)/(СО+СO2)≅2,05.
3. В результате проведения реакции синтеза метанола водород оказывается в избытке и он попадает в "продувки", что в результате приводит к повышенным энергоматериальным затратам.
Другим способом получения синтез-газа с низким соотношением Н2/СО для синтеза метанола является некаталитическое парциальное окисление природного или другого углеводородного газа (Справочник азотчика, Издательство "Химия", Москва, 1986). Природный газ реагирует с кислородом при высокой температуре (1300-1500°С) в свободном объеме. Получаемый газ состоит в основном из водорода и оксида углерода.
В первом приближении процесс описывается уравнением для метана:
а для гомологов метана:
Возможность проведения процесса в отсутствие катализатора обеспечивается высокой температурой горения (1350-1400°С). Для осуществления автотермичности процесса при указанной температуре отношение O2:СН4 держат несколько выше стехиометрического, в результате чего в продуктах реакции, кроме Н2 и СО, появляются водяной пар (Н2О) и двуокись углерода (СО2). Соотношение Н2 и СО в синтез-газе после некаталитического парциального окисления природного газа составляет около 1,7-1,8.
Соотношение Н2/СО можно варьировать либо дополнительной подачей Н2О, либо дополнительной подачей СО2.
Конечное состояние процесса некаталитического парциального окисления природного газа соответствует равновесию реакции водяного газа:
которое устанавливается до температуры ~1200°С. При более низких температурах из-за кинетических торможений состав газа будет отличаться от равновесного.
Независимо от состава исходного природного газа в продуктах реакции в небольшом количестве остается только метан.
В процессе неполного окисления углеводорода возможно выделение свободного углерода (сажи) по реакции:
Выделение свободного углерода увеличивается при конверсии высших углеводородов. Для ограничения процесса выделения сажи к исходным реагентам добавляют водяной пар.
Таким образом, состав получаемого газа, соотношение Н2/СО, температура и граница сажевыделения устанавливаются в соответствии с исходными параметрами.
Реакция неполного окисления природного газа сопровождается увеличением объема, поэтому применение давления должно препятствовать окислению.
С ростом температуры (более 1200°С) давление не лимитирует количественное окисление метана, поскольку температурный фактор компенсирует отрицательное влияние давления и является определяющим.
Однако некаталитическое парциальное окисление имеет ряд существенных недостатков:
1. Повышенный расход кислорода на исходный метан (или природный газ) приводит к повышенным расходам по сравнению с автотермическим реформингом. Оборудование для производства кислорода дорогостоящее и составляет до 70% от стоимости производства метанола (Me). Кроме того, производство кислорода является энергоемким производством.
2. В процессе выделяется небольшое количество сажи (углерода), что требует дополнительной стадии очистки, усложняет работу на последующих технологических стадиях.
Все это приводит к большим энергоматериальным затратам на единицу продукции.
Наиболее близким по технической сущности способом к заявляемому изобретению является способ, разработанный английской фирмой ICI (патент Великобритании 2139644 от 14 ноября 1984 и патент США 4618451 от 21 октября 1986).
Синтез-газ получают в двухстадийном процессе. На первой стадии природный газ реагирует с кислородом или кислородосодержащим газом. Количество кислорода берется достаточным, чтобы избежать сажеобразования.
Полученный на первой стадии горячий газовый поток, содержащий Н2 и СО, имеет температуру порядка 1093-1260°С. В этот газ вводится дополнительное количество углеводородов и водяной пар или СО2.
На второй стадии получаемая газовая смесь направляется на катализатор автотермического парового реформинга, где протекает адиабатический процесс паровой конверсии с получением синтез-газа.
Конечная температура полученного газа равна 750-950°С. Давление процесса - от 0,5 до 5 МПа. В результате получается синтез-газ с f=(Н2-СO2)/(СО+СO2)≅1,5-2,2, где Н2, СО, СO2 - число молей этих газов в газовом потоке, что дает возможность использовать этот газ в производстве Me.
Данный способ производства синтез-газа имеет также ряд недостатков:
1. Получаемая низкая температура на первой стадии приводит к повышенному содержанию метана в конечном синтез-газе; непрореагировавший метан на следующих стадиях в цикле производства Me будет накапливаться, что приведет к повышенным продувкам синтез-газа и, как результат, к увеличенным расходам О2 и исходного углеводорода на единицу получаемого продукта.
2. Предлагаемая подача пара во второй ступени непосредственно перед катализатором не приведет к интенсивному смешиванию с горячим конвертированным газом, поскольку не предусмотрена зона смешивания и, как следствие, появится неравномерное распределение температуры по сечению шахтного конвертера.
3. Исходя из расчетов термодинамики, в соответствии со способом, описанным в вышеупомянутом патенте фирмы ICI, невозможно получить газ с мольным соотношением Н2/СО, равным 1:1, т.к. теплового потенциала на первой стадии конверсии будет недостаточно для конверсии СО2 по реакции:
Задачей представленного изобретения является разработка способа получения синтез-газа заданного состава основных компонентов Н2 и СО в диапазоне соотношений Н2/СО от 1:1 до 2:1 и снижения энергозатрат.
Указанная задача решается способом получения синтез-газа заданного состава основных компонентов Н2 и СО в диапазоне изменения соотношения от 1:1 до 2:1 для производства метанола, диметилового эфира или для синтезов Фишера-Тропша, включающим две стадии: стадию А) парциального окисления и стадию Б) конверсии остаточного метана с продуктами стадии А на катализаторе, при этом стадию А) парциального окисления проводят в две ступени: а) некаталитического парциального окисления природного газа кислородом с получением в продуктах реакции неравновесного содержания Н2О и СН4 при мольном соотношении кислорода и метана, примерно равном 0,76-0,84, б) конверсии продуктов реакции ступени (а) с корректирующими добавками СО2 и Н2О или Н2О и CH4 с получением газовой смеси, которая проходит конверсию остаточного метана водяным паром на катализаторе.
Ступень а) стадии А) осуществляют при подаче 100% от общего требуемого расхода кислорода, 75-100% от общего расхода исходного природного газа с получением мольного соотношения кислород: метан, примерно равного 0,76-0,84, при времени пребывания в зоне горения t, равном 0,005-0,01 с в диапазоне рабочего давления 2,0-10 МПа, при этом в получаемом газе мольная концентрация Н2О составляет от 18 до 30%, а СН4 - от 1 до 8%, ступень б) стадии А) осуществляют при подаче оставшейся части природного газа от 25 до 0%, корректирующих добавок с временем пребывания t=0,003-1 с.
Первая ступень осуществляется в режиме некаталитического парциального окисления (автотермического) с температурой 1800-1400°С с получением в синтез-газе неравновесного содержания Н2О и СН4 и мольного соотношения Н2/СО≅1,4-1,8.
Вторая стадия проводится на насадке, которая может иметь несколько слоев; первый слой по ходу газа - инертный, имеющий развитую поверхность для выгазовывания сажи и последующие слои - каталитические - для доконверсии оставшегося метана.
Преимущества заявляемого способа заключаются в следующем:
1. На первой ступени первой стадии процесс конверсии осуществляется как термодинамически неравновесный с временем пребывания 0,005-0,01 с, при этом в конвертируемом газа сохраняется повышенное содержание водяного пара в продуктах реакции (Н2О) до 18-20 об.% при давлении до 2,0 МПа или 25-30% при давлении до 10,0 МПа и непрореагировавшего метана 1-3% и 7-8% соответственно давлению, минимальным количеством образующейся сажи (до 50 мг/нм3 конвертированного газа).
2. Количество подаваемого кислорода на первую ступень первой стадии соответствует мольному соотношению α=0,5[О2]/[СН4] в диапазоне 0,38-0,42 в зависимости от получения необходимого мольного соотношения Н2:СО в конечном продукте - конвертированном газе, а также величины содержания непрореагировавшего метана.
3. Во вторую ступень первой стадии подается корректирующая часть СО2 и Н2O или Н2О и СН4 (15-25% от суммарного расхода), при этом благодаря высокому содержанию паров Н2О в газе образования сажи не происходит.
Время пребывания составляет 0,3-3 с, на выходе из второй ступени устанавливается равновесная температура, которая составляет 1100-1500°С.
Благодаря принятым решениям реализуется экономичный технологический способ.
Способ может быть осуществлен по следующей схеме, показанной на чертеже, где:
1 - смесительная горелка (СГ);
2 - камера конверсии для осуществления процесса не каталитического парциального окисления;
3 - камера смешивания СO2 и Н2О или Н2О и СН4 с продуктами первичного некаталитического парциального окисления;
4 - камера коррекции;
5 - шахтный реактор;
6 - фильтр из специальных материалов;
7 - катализатор;
8 - фильтр;
9 - опорная решетка.
Предлагаемый процесс проводится следующим образом: природный газ после компрессии от 2 до 15 МПа и подогретый до 520°С подается в горелку (п.1), куда также подается кислород, сжатый до давления от 2 до 15 МПа и подогретый до 150-250°С. Концентрация кислорода составляет 95-99 об.%. Температуру, давление и расходы потоков регулируют автоматически.
Кислород и природный газ раздельно поступают в камеру конверсии (п.2), где протекает реакция конверсии метана при температуре от 1200 до 1900°С.
Время пребывания конвертированного газа, температура и давление рассчитываются таким образом, чтобы получить газ заданного состава после шахтного реактора (п.5).
Состав газа после камеры конверсии является неравновесным, т.е. не достигается термодинамического равновесия реакции
и газ имеет следующий состав, об.%: СН4 - 1-8; СО2 - 1,5-4; Н2O - 15-20; Н2 - 40-50; СО - 25-35.
В газе присутствует до 50 мг/нм3 непрореагировавшего углерода (сажа).
После камеры конверсии газ поступает на смешение с СO2 и CH4, если требуется получить конечный синтез-газ с соотношением Н2/СО≅1:1, или с Н2O и CH4, если требуется получить конечный синтез-газ с соотношением Н2/СО≅2:1.
После камеры смешения (п.3) газ поступает в камеру коррекции (п.4), в которой происходит гомогенная реакция (5) при температуре 1200-1100°С.
Дальнейшая конверсия остаточного СН4 происходит в шахтном конверторе (п.5). Сажа фильтруется на входе в шахтный реактор фильтром (п.6) и конвертируется водяным паром полностью.
Далее изобретение будет более подробно пояснено на конкретных примерах, которые приведены как иллюстрация изобретения и ни в коей мере не ограничивают объем притязаний, заявленный в формуле изобретения.
Пример 1. Получение синтез-газа с мольным соотношением Н2:СО, равным 2:1
Природный газ в количестве 1000 нм3/ч под давлением 3 МПа и температуре 450°С и кислород в количестве 730 нм3/ч под давлением 3 МПа при температуре 150°С подают в горелку (п.1) и далее в камеру конверсии (п.2).
В камере конверсии протекает реакция высокотемпературной конверсии при температуре 1860°С с получением конвертированного газа, содержащего (на влажный газ), об.%: CH4 - 2,39; СO2 - 2,03; Н2О - 16,43; Н2 - 48,64; СО - 30,51.
В полученный газ в камеру смешивания дополнительно подаются 166 нм3/ч СН4 и 373 нм3/ч Н2О. Смесь конвертированного и дополнительного газа поступает в камеру коррекции (п.4) и затем в шахтный реактор (п.5).
На выходе из шахтного реактора газ имеет следующий состав, об.%: СН4 - 0,65; СO2 - 2,78; Н2O - 15,33; Н2 - 54,16; СО - 27,08 в количестве 3821 нм3/ч.
Полученный газ с температурой 1240°С направляется далее на охлаждение с утилизацией тепла и выделением технологического конденсата и далее на последующую переработку.
Пример 2. Получение конвертированного газа с мольным соотношением Н2:СО, равным 1:1
На первой ступени конверсия проводится, как это описано в примере 1.
В полученный газ в камеру смешивания (п.3) дополнительно подается 192,0 нм3/ч Н2O и 754 нм3/ч СО2.
Смесь конвертированного и дополнительного газа поступает в камеру коррекции (п.4) и затем в шахтный реактор (п.5).
На выходе из шахтного реактора газ имеет следующий состав, об.%: СН4 - 1,94; СО2 - 9,86; Н2О - 21,10; Н2 - 34,00; СО - 33,10 в количестве 4276 нм3/ч.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА | 2009 |
|
RU2417158C2 |
Способ переработки природного/попутного газа в синтез-газ автотермическим риформингом | 2017 |
|
RU2664063C1 |
КОМПЛЕКСНЫЙ СПОСОБ ПРОИЗВОДСТВА ДИМЕТИЛОВОГО ЭФИРА ИЗ УГЛЕВОДОРОДНЫХ ГАЗОВ | 2002 |
|
RU2220939C2 |
СПОСОБ ПОЛУЧЕНИЯ МЕТАНОВОДОРОДНОЙ СМЕСИ | 2010 |
|
RU2438969C1 |
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДОМЕТАНОВОЙ СМЕСИ | 2007 |
|
RU2381175C2 |
СПОСОБ ПОЛУЧЕНИЯ МЕТАНО-ВОДОРОДНОЙ СМЕСИ И ВОДОРОДА | 2013 |
|
RU2542272C2 |
ЭНЕРГОСБЕРЕГАЮЩИЙ УНИФИЦИРОВАННЫЙ СПОСОБ ГЕНЕРАЦИИ СИНТЕЗ-ГАЗА ИЗ УГЛЕВОДОРОДОВ | 2016 |
|
RU2664526C2 |
КОМПЛЕКСНЫЙ СПОСОБ ПРОИЗВОДСТВА ТОПЛИВНОГО ДИМЕТИЛОВОГО ЭФИРА И БЕНЗИНА ИЗ УГЛЕВОДОРОДНЫХ ГАЗОВ | 2003 |
|
RU2266893C2 |
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА ПАРО-УГЛЕКИСЛОТНОЙ КОНВЕРСИЕЙ ПРИРОДНОГО ГАЗА | 2008 |
|
RU2379230C2 |
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА И ВОДОРОД-МЕТАНОВОЙ СМЕСИ | 2012 |
|
RU2520482C1 |
Изобретение относится к способу получения синтез-газа, содержащего в основном Н2 и СО, для производства спиртов, аммиака, для процессов Фишера-Тропша. Способ получения синтез-газа с заданным соотношением Н2/СО в диапазоне от 1,0 до 2,0 включает две стадии: стадию А) парциального окисления и стадию Б) конверсии остаточного метана с продуктами стадии А) на катализаторе. Стадию А) парциального окисления проводят в две ступени: а) некаталитического парциального окисления природного газа кислородом с получением в продуктах реакции неравновесного содержания Н2О и СН4 при мольном соотношении кислорода и метана, примерно равном 0,76-0,84, б) конверсии продуктов реакции ступени а) с корректирующими добавками СО2 и Н2О или Н2О и СН4 с получением газовой смеси, которая проходит конверсию остаточного метана водяным паром на катализаторе. Изобретение позволяет снизить энергозатраты. 2 з.п.ф-лы, 1 ил.
СПОСОБ ФОРМИРОВАНИЯ ОПТИЧЕСКОГО ИЗОБРАЖЕНИЯ В НЕКОГЕРЕНТНОМ СВЕТЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) | 2000 |
|
RU2179336C1 |
Способ получения синтез-газа из углеводородного сырья | 1988 |
|
SU1831468A3 |
СПОСОБ КАТАЛИТИЧЕСКОГО ЧАСТИЧНОГО ОКИСЛЕНИЯ ПРИРОДНОГО ГАЗА, СПОСОБ СИНТЕЗА МЕТАНОЛА, СПОСОБ СИНТЕЗА ФИШЕРА-ТРОПША | 1994 |
|
RU2126376C1 |
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ ИЗ УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ | 1998 |
|
RU2143417C1 |
Устройство для измерения натяжения прокатываемой полосы | 1974 |
|
SU516441A1 |
WO 00/09441 А2, 24.02.2000 | |||
EP 640559 В1, 01.09.1995. |
Авторы
Даты
2004-05-20—Публикация
2002-01-09—Подача