СПОСОБ КАЛИБРОВКИ АКСЕЛЕРОМЕТРОВ Российский патент 2005 года по МПК G01C25/00 

Описание патента на изобретение RU2249793C2

Изобретение относится к области гироприборостроения и может быть использовано в трехосных гироскопических стабилизаторах инерциальных систем (ИНС) и гирогоризонткомпасов (ГГК).

Известен способ определения масштабного коэффициента горизонтного акселерометра, оси чувствительности которого совпадают с горизонтальными осями платформы гиростабилизатора, заключающийся в включении акселерометра и выдержке интервала времени, необходимого для достижения установившегося теплового и электромагнитного состояния, последовательном развороте корпуса акселерометра относительно начального положения вокруг горизонтальной оси на заданный угол ψ1 в положительном, а затем на заданный угол ψ2 в отрицательном направлении, механической фиксации корпуса акселерометра и измерении его сигналов U1, U2 в каждом положении, вычислении масштабного коэффициента по разности измерений в соответствии с формулой

K=(U1-U2)/(ψ12)g,

где g - величина ускорения силы тяжести.

(См., например, С.Ф.Коновалов, Б.С.Коновалов, Д.В.Майоров, Г.М.Новоселов, А.В.Полинков, А.А.Трунов. Автоматическое оборудование для испытаний акселерометров, сборник 4 Санкт-Петербургской международной конференции по интегрированным навигационным системам. Май, 1997 г., с.223, ISB №5-900780-13-9.)

Указанный способ позволяет исключить влияние адитивных составляющих погрешности акселерометра, вызванных начальным отклонением оси чувствительности относительно плоскости горизонта ψ0 и дрейфом нуля Wo, что поясняется нижеследующим.

При наличии отмеченных погрешностей сигнал акселерометра определяется выражением

где W=gψ - проекция ускорения силы тяжести на ось чувствительности акселерометра, вызванного поворотом корпуса акселерометра на угол ψ относительно начального положения.

Сигналы акселерометра в двух заданных положениях определяются выражениями

Разность этих сигналов позволяет исключить влияние адитивных погрешностей на вычисление масштабного коэффициента.

При реализации указанного способа в трехосном стабилизаторе для осуществления механического разворота и фиксации его платформы с акселерометрами необходимо снять герметичные тепловые и электромагнитные экраны платформы и отключить системы термостабилизации, стабилизации, разгона гиромоторов, управления токами датчиков момента гироблоков, что приводит к резкому изменению структуры тепловых и электромагнитных полей в месте установки акселерометров. Изменение тепловых и электромагнитных условий в месте установки акселерометра вызывает нестабильность масштабного коэффициента, величина которой по данным технических условий наиболее известных отечественных акселерометров приведена в таблице №1.

Таблица №1МаркаНестабильностьИзготовительАК100,1%ЦНИИ "Дельфин" г.МоскваД110,15%ПНППК г.ПермьА 120,2%РПЗ г. Раменское

Таким образом, недостатком известного способа определения масштабного коэффициента акселерометра при его реализации в трехосном гиростабилизаторе является появление дополнительных погрешностей определения коэффициента из-за изменения температурных и электромагнитных условий, то есть ухудшение точности калибровки.

Целью изобретения является повышение точности определения масштабного коэффициента акселерометра за счет сохранения структуры тепловых и электромагнитных полей в месте установки.

Поставленная цель достигается тем, что перед включением акселерометра, выдержкой интервала времени, необходимого для достижения установившегося теплового и электромагнитного состояния, последовательным разворотом платформы гиростабилизатора с установленным акселерометром относительно начального положения вокруг горизонтальной оси сначала в положительном, а затем в отрицательном направлении, измерением сигналов горизонтных акселерометров U1 и U2 в каждом положении и вычислением масштабного коэффициента горизонтного акселерометра по разности измерений в соответствии с формулой:

дополнительно включают системы термостабилизации, стабилизации, разгона гиромоторов, управления токами датчиков момента гироскопов, согласовывают горизонтальные оси платформы с горизонтальными осями карданова подвеса, на которых установлены датчики углов качек, путем подачи тока в датчик момента азимутального, управляющего движением платформы вокруг вертикальной оси гироскопа, включают режим горизонтирования, при котором токи в датчиках момента горизонтных гироскопов пропорциональны сигналам соответствующих горизонтных акселерометров, осуществляют разворот и фиксацию платформы в положительном и отрицательном направлении осуществляют путем подачи постоянного тока положительной, а затем отрицательной величины в датчик момента соответствующего горизонтного гироскопа и измеряют сигнал соответствующего датчика угла качки при повороте в положительном и отрицательном направлении, при соответствующих углах поворота ψ1, и ψ2.

Теоретическое обоснование заявляемого способа заключается в следующем.

После включения системы термостабилизации, стабилизации разгона гиромоторов, управления токами датчиков момента гироскопов трехосного гиростабилизатора на платформе гиростабилизатора устанавливаются тепловые и электромагнитные поля и она, с точностью до дрейфов, сохраняет первоначальное положение относительно инерциального пространства и может управляться подачей токов в датчики момента соответствующих гироскопов. Согласование горизонтальных осей платформы, с которыми совпадают оси чувствительности горизонтных акселерометров, с горизонтальными осями карданева подвеса, по которым установлены датчики углов качек, осуществляется подачей тока в датчик момента азимутального гироскопа, управляющего движением платформы гиростабилизатора вокруг верикальной оси. Подача тока прекращается, когда сигнал с курсового датчика угла на вертикальной оси карданова подвеса станет близким нулю, т.е. когда горизонтные оси платформы и карданова подвеса будут совпадать.

После включения акселерометра и режима горизонтирования, при котором ток I в датчике момента горизонтного гироскопа пропорционален сигналу "U" соответствующего акселерометра, угловая скорость управления вокруг соответствующей горизонтной оси и платформы Ω определяется выражением:

где Kg - масштабный коэффициент датчика момента,

Н - кинетический момент гироскопа,

Ку - коэффициент управления,

Io - постоянный ток, подаваемый в датчик момента.

Движение платформы вокруг горизонтальной оси по углу ψ в любой момент времени определяется дифференциальным уравнением:

где ω - проекция угловой скорости Земли на горизонтальную ось,

Р - дрейф гироскопа.

После подачи постоянного тока Iо платформа начинает разворачиваться вокруг горизонтальной оси с угловой скоростью , сигнал акселерометра U увеличивается, платформа заканчивает разворот и фиксируется в положении равновесия, при котором =0, сигнал акселерометра U1 при этом определяется из выражения (5) с учетом выражения (4)

Выражение (6) показывает, что, изменяя знак и величину постоянного тока Iо, подаваемого в датчик момента горизонтного гироскопа, можно изменять знак и величину сигнала акселерометра, т.е. поворачивать платформу вместе с акселерометром относительно горизонта в положительном и отрицательном направлении на разные углы. При этом измеряемые сигналы акселерометра при положительном и отрицательном повороте определяются выражениями (2), а соответствующие им углы поворота ψ1 и ψ2 измеряются соответствующим датчиком угла качки.

Разность сигналов U1 и U2 позволяет вычислить масштабный коэффициент акселерометра в соответствии с выражением (3).

Дополнительная погрешность определения масштабного коэффициента ΔК предлагаемого способа калибровки возникает из-за погрешности Δψ измерения углов ψ1, ψ2 датчиком угла качки. Эта погрешность, полученная из выражения (3), имеет вид:

Для используемых в современных гиростабилизаторах двухотсчетных вращающихся трансформаторов типа ВТ 100 или СКТД-261 величина Δψ=20". (Для цифровых датчиков и индуктосинов эта величина еще меньше).

Тогда при наклоне акселерометра на угол 10-20° величина Δψ/ψ=(0,05-0,025)% и дополнительная погрешность определения масштабного коэффициента акселерометра предлагаемым методом будет в 2-4 раза меньше, чем погрешности способа прототипа, характеризующаяся приведенными в таблице 1 значениями нестабильностей.

Операции предлагаемого способа калибровки реализуются при регулировке ИНС или ГГК, построенного на базе любого трехосного гиростабилизатора.

Похожие патенты RU2249793C2

название год авторы номер документа
ГИРОИНЕРЦИАЛЬНЫЙ МОДУЛЬ ГИРОСКОПИЧЕСКОГО ИНКЛИНОМЕТРА 2012
  • Кривошеев Сергей Валентинович
  • Стрелков Александр Юрьевич
RU2499224C1
ГИРОАЗИМУТГОРИЗОНТКОМПАС 2001
  • Андреев А.Г.
  • Ермаков В.С.
  • Мафтер М.Б.
RU2202769C2
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА КУРСА ОБЪЕКТА И САМООРИЕНТИРУЮЩАЯСЯ ГИРОСКОПИЧЕСКАЯ СИСТЕМА КУРСОУКАЗАНИЯ 2000
  • Верзунов Е.И.
  • Болячинов М.Ю.
  • Буров Д.А.
  • Кокошкин Н.Н.
  • Андреев А.Г.
  • Ермаков В.С.
RU2186338C1
ГИРОСКОПИЧЕСКАЯ НАВИГАЦИОННАЯ СИСТЕМА 2000
  • Юрист С.Ш.
  • Смоллер Ю.Л.
  • Жбанов Ю.К.
  • Бержицкий В.Н.
  • Ильин В.Н.
RU2169903C1
СПОСОБ АВТОНОМНОЙ НАЧАЛЬНОЙ ВЫСТАВКИ СТАБИЛИЗИРОВАННОЙ ПЛАТФОРМЫ ТРЕХОСНОГО ГИРОСТАБИЛИЗАТОРА В ПЛОСКОСТЬ ГОРИЗОНТА И НА ЗАДАННЫЙ АЗИМУТ 2015
  • Дерябин Максим Сергеевич
  • Захаров Анатолий Николаевич
  • Потапенков Виктор Кононович
RU2608337C1
ГИРОГОРИЗОНТКОМПАС ДЛЯ ПОДВИЖНОГО ОБЪЕКТА 1993
  • Тиль А.В.
RU2062985C1
СПОСОБ КОМПЕНСАЦИИ ИНЕРЦИОННОЙ ПОГРЕШНОСТИ ГИРОКОМПАСА ПРИ МАНЕВРИРОВАНИИ СУДНА И ГИРОКОМПАС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 1997
  • Гаврилов А.Н.
  • Каштанов В.Д.
  • Кузин С.Н.
  • Никишин С.А.
  • Благовещенский М.Н.
  • Румянцев Л.Н.
RU2128822C1
Одноосный силовой горизонтальный гиростабилизатор 2019
  • Кривошеев Сергей Валентинович
  • Лукин Кирилл Олегович
RU2716599C1
УСТРОЙСТВО СТАБИЛИЗАЦИИ, УСКОРЕННОГО ВОССТАНОВЛЕНИЯ И КОНТРОЛЯ СИЛОВОЙ ГИРОСКОПИЧЕСКОЙ ВЕРТИКАЛИ 2000
  • Белаид М.М.
  • Кривошеев С.В.
  • Огородникова Н.Н.
RU2172934C1
ГИРОСКОП 2010
  • Макаров Анатолий Михайлович
  • Кожин Владимир Витальевич
  • Грязнов Евгений Алексеевич
  • Уракова Лариса Евгеньевна
RU2446382C1

Реферат патента 2005 года СПОСОБ КАЛИБРОВКИ АКСЕЛЕРОМЕТРОВ

Изобретение относится к области гироприборостроения и может быть использовано в трехосных гироскопических стабилизаторах инерциальных систем (ИНС) и гирогоризонткомпасов (ГГК). Способ калибровки акселерометров заключается во включении акселерометра, выдержке интервала времени, необходимого для достижения установившегося теплового и электромагнитного состояния последовательном развороте платформы трехосного гиростабилизатора с установленным акселерометром относительно начального положения вокруг горизонтальной оси сначала в положительном, а затем в отрицательном направлении, измерении сигналов горизонтных акселерометров U1 и U2 в каждом положении и вычислении масштабного коэффициента горизонтного акселерометра по разности измерений в соответствии с формулой К=(U1-U2)/(ψ12)g, где g - величина ускорения силы тяжести. Перед включением акселерометра дополнительно включают системы термостабилизации, стабилизации, разгона гиромоторов, управления токами датчиков момента гироскопов; согласовывают горизонтальные оси платформы с горизонтальными осями карданова подвеса, на которых установлены датчики углов качек, путем подачи тока в датчик момента азимутального, управляющего движением платформы вокруг вертикальной оси гироскопа; включают режим горизонтирования, при котором токи в датчиках момента горизонтных гироскопов пропорциональны сигналам соответствующих горизонтных акселерометров; причем разворот и фиксацию платформы в положительном и отрицательном направлении осуществляют путем подачи постоянного тока положительной, а затем отрицательной величины в датчик момента соответствующего горизонтного гироскопа; и измеряют сигнал соответствующего датчика угла качки при повороте в положительном и отрицательном направлении, при соответствующих углах поворота ψ1 и ψ2. Техническим результатом является повышение точности определения масштабного коэффициента за счет сохранения структуры тепловых и электромагнитных полей в месте установки. 1 табл.

Формула изобретения RU 2 249 793 C2

Способ калибровки акселерометров, содержащий включение акселерометра, выдержку интервала времени, необходимого для достижения установившегося теплового и электромагнитного состояния, последовательный разворот платформы трехосного гиростабилизатора с установленным акселерометром относительно начального положения вокруг горизонтальной оси сначала в положительном, а затем в отрицательном направлении, измерение сигналов горизонтных акселерометров U1 и U2 в каждом положении и вычисление масштабного коэффициента горизонтного акселерометра по разности измерений в соответствии с формулой К=(U1-U2)/(ψ12)g, где g - величина ускорения силы тяжести, отличающийся тем, что перед включением акселерометра дополнительно включают системы термостабилизации, стабилизации, разгона гиромоторов, управления токами датчиков момента гироскопов; согласовывают горизонтальные оси платформы с горизонтальными осями карданова подвеса, на которых установлены датчики углов качек, путем подачи тока в датчик момента азимутального, управляющего движением платформы вокруг вертикальной оси гироскопа; включают режим горизонтирования, при котором токи в датчиках момента горизонтных гироскопов пропорциональны сигналам соответствующих горизонтных акселерометров; причем разворот и фиксацию платформы в положительном и отрицательном направлении осуществляют путем подачи постоянного тока положительной, а затем отрицательной величины в датчик момента соответствующего горизонтного гироскопа; и измеряют сигнал соответствующего датчика угла качки при повороте в положительном и отрицательном направлении, при соответствующих углах поворота ψ1 и ψ2.

Документы, цитированные в отчете о поиске Патент 2005 года RU2249793C2

КОНОВАЛОВ С.Ф
и др
Автоматическое оборудование для испытания акселерометров
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Май, 1997, с.223, 15В №5-900780-13-9
СПОСОБ КАЛИБРОВКИ ГИРОСКОПИЧЕСКИХ ИЗМЕРИТЕЛЕЙ УГЛОВОЙ СКОРОСТИ 1999
  • Лебеденко О.С.
  • Шепеть И.П.
  • Сельвесюк Н.И.
  • Иванов М.Н.
  • Протасов К.А.
  • Дорожкин А.Д.
RU2156959C1
СПОСОБ КАЛИБРОВКИ ДАТЧИКА УГЛА ЭЛЕКТРОСТАТИЧЕСКОГО ГИРОСКОПА 1994
  • Гуревич С.С.
  • Демидов А.Н.
  • Ландау Б.Е.
  • Левин С.Л.
  • Чуфарин В.А.
RU2114396C1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
US 3782167 А, 01.01.1976.

RU 2 249 793 C2

Авторы

Андреев А.Г.

Ермаков В.С.

Мафтер М.Б.

Морозов В.А.

Даты

2005-04-10Публикация

2002-08-06Подача