СПОСОБ ИЗМЕРЕНИЯ ВЫСОТЫ НЕПРОВАРА В СВАРНЫХ ШВАХ ТОНКОСТЕННЫХ ИЗДЕЛИЙ Российский патент 2005 года по МПК G01N29/04 

Описание патента на изобретение RU2256907C1

Изобретение относится к акустическим методам неразрушающего контроля и может быть использовано для определения качества сварных швов тепловыделяющих элементов ВВЭР-1000, ВВЭР-440.

Известен способ измерения размеров дефектов при ультразвуковом контроле изделий (см. п. РФ № 2191376, МКИ G 01 N 29/04, от 25.02.2000 г.), заключающийся в том, что перемещают ультразвуковой искатель над сварным швом, одновременно прозвучивают его и по наличию отраженного сигнала судят о наличие непровара, недостатком которого является низкая чувствительность при выявлении непровара высотой менее 0,15 мм, а также невозможность измерения высоты непровара менее 0,15 мм, так как в этом случае нет прямой зависимости между амплитудой сигнала и высотой непровара.

Наиболее близким по технической сущности и достигаемому результату является способ контроля сварных швов по а.с. № 920520, МКИ G 01 N 29/04 (прототип), заключающийся в том, что перемещают ультразвуковой искатель, сфокусированный на внутренней стенке изделия, поперек сварного шва нормально к его поверхности, одновременно прозвучивают его и по числу и форме экстремумов полученной зависимости отраженных донных сигналов определяют наличие непровара. Недостатком этого способа является низкая чувствительность при выявлении непровара высотой менее 0,15 мм, а также невозможность измерения высоты непровара менее 0,15 мм, так как в этом случае нет прямой зависимости между амплитудой сигнала и высотой непровара.

Технической задачей изобретения является повышение чувствительности при выявлении непровара высотой менее 0,15 мм и измерение высоты непровара менее 0,15 мм в тонкостенных изделиях с толщиной стенки менее 1 мм.

Поставленная задача решается тем, что в способе измерения высоты непровара в сварных швах тонкостенных изделий, включающем дискретное вращение изделия, возвратно-поступательное движение над сварным швом сфокусированного на внутренней поверхности изделия пьезопреобразователя с одновременным излучением и приемом ультразвуковых сигналов, фиксацию амплитуды отраженного сигнала и координат положения пьезопреобразователя, согласно изобретению, пьезопреобразователь устанавливают под углом к изделию, определяют максимальную амплитуду отраженного сигнала, определяют координаты положения пьезопреобразователя, в которых амплитуда равна 0,25 максимальной амплитуды отраженного сигнала, и производят определение высоты непровара по формуле:

где h - высота непровара;

L1, L2 - координаты, на которых амплитуда принятого сигнала равна 0,25 амплитуды максимального сигнала от непровара;

d - диаметр ультразвукового пятна в изделии;

α - угол ввода ультразвуковых колебаний.

Указанная совокупность признаков является новой и обладает изобретательским уровнем.

Установление пьезопреобразователя наклонно к поверхности изделия таким образом, чтобы угол ввода ультразвуковых колебаний находился между первым и вторым критическим углом, позволяет достичь того, что в изделии распространяются только поперечные волны, что повышает чувствительность. В каждой точке сканирования фиксируют амплитуду отраженного сигнала и координату положения пьезопреобразователя (номер шага сканирования), по которым судят о наличии непровара.

Сущность изобретения поясняется графическими материалами.

На фиг.1 представлен график кривой амплитуды принятого сигнала от непровара в точках измерения с различными координатами.

На фиг.2 представлен чертеж аппаратурной реализации способа.

Способ осуществляется следующим образом.

Используется фокусированный пьезопреобразователь с рабочей частотой f=30 МГц, диаметром пластины D=6 мм и фокусным расстоянием Fc=19 мм. Преобразователь устанавливается таким образом, что угол падения ультразвуковых колебаний составляет 30° (для изделия из циркония первый критический угол равен 19°, а второй критический угол равен 41°), поэтому в материале изделия, а именно - цирконии - угол ввода ультразвуковых колебаний α составляет ~49° и распространяется только поперечная волна колебаний. Диаметр ультразвукового пятна в изделии d≈0,15 мм. Пьезопреобразователь устанавливается в начальной точке сканирования, где гарантированно отсутствует непровар. Затем производится запуск генератора ультразвуковых импульсов. Так как непровар в данной точке сканирования отсутствует, то приемник ультразвуковых импульсов принимает сигнал, отраженный внутренней поверхностью изделия, и усиливает собственные шумы ультразвукового тракта. Затем сигнал с выхода приемника ультразвуковых импульсов поступает на аналого-цифровой преобразователь, преобразуется в цифровую форму и регистрируется в запоминающем устройстве вместе с координатой положения пьезопреобразователя для последующего определения уровня шумов. Далее пьезопреобразователь перемещается перпендикулярно сварному шву вдоль оси изделия на заданный шаг (заданием шага сканирования задается точность определения высоты непровара) и снова производится излучение и прием ультразвуковых колебаний, регистрация амплитуды сигнала на выходе приемника ультразвуковых колебаний и координаты положения пьезопреобразователя. После того как пьзопреобразователь в процессе сканирования достигает точки окончания зоны гарантированного отсутствия непровара, микропроцессор определяет уровень шумов как удвоенную максимальную амплитуду, зарегистрированную на выходе приемника ультразвуковых колебаний во всех точках сканирования. Далее пьезопреобразователь также перемещается с заданным шагом до конца зоны сканирования и в каждой точке происходит излучение и прием ультразвуковых колебаний, регистрация амплитуды сигнала на выходе приемника ультразвуковых колебаний и координаты пьезопреобразователя. В случае, если до конца зоны сканирования зарегистрированные амплитуды сигнала на выходе приемника ультразвуковых колебаний не превышают уровень шумов, принимается решение об отсутствии непровара. В случае, если зарегистрированные амплитуды сигнала на выходе приемника ультразвуковых колебаний превышают уровень шумов, определяется максимальная амплитуда сигнала, находятся координаты L1 и L2 и по формуле (1) определяется высота непровара.

Аппаратурная реализация способа осуществляется следующим образом.

Устройство для измерения высоты непровара состоит из узла 1 загрузки-выгрузки, узла 2 зажима и вращения, узла 3 сканирования, содержащего каретку 4 с закрепленным на ней пьезопреобразователем 5, иммерсионной ванны 6, генератора 7 ультразвуковых импульсов, приемника 8 ультразвуковых импульсов, микропроцессора 9, аналого-цифрового преобразователя 10 и оперативного запоминающего устройства 11. Микропроцессор 9 соединен со всеми исполнительными механизмами и датчиками.

Устройство для измерения высоты непровара работает следующим образом.

По сигналу с микропроцессора 9 изделие из узла 1 загрузки-выгрузки подается в иммерсионную ванну 6, где оно узлом 2 зажима и вращения зажимается. Далее сварной шов изделия сканируется пьезопреобразователем 5 узла 3 сканирования возвратно-поступательным перемещением каретки 4 и поворотом изделия с заданным шагом. В каждой точке контроля производится запуск генератора 7 ультразвуковых импульсов. Сигнал с выхода генератора 7 ультразвуковых импульсов поступает на пьезопреобразователь 5, который преобразует электрические импульсы в ультразвуковые и фокусирует их в зоне сварного шва. Отраженный ультразвуковой импульс принимается тем же пьезопреобразователем 5, преобразуется в электрический импульс и поступает на вход приемника 8.

Преобразованный электрический импульс с выхода приемника 8 ультразвуковых импульсов поступает на вход аналого-цифрового преобразователя 10, где преобразуется в цифровую форму, и микропроцессор передает данные об амплитуде отраженного ультразвукового импульса и координате положения пьезопреобразователя (номер шага сканирования) в оперативное запоминающее устройство 11. После завершения одной строки сканирования (перемещения каретки от начала зоны шва до конца зоны шва) микропроцессор определяет уровень шумов в области гарантированного отсутствия непровара, максимальную амплитуду отраженного сигнала, превышающую уровень шумов, на этой строке, определяет координаты L1 и L2, как показано на фиг.1, и по формуле (1) производит вычисление высоты непровара на данной строке контроля. Если на данной строке контроля максимальная амплитуда не превышает уровень шумов, то делается заключение об отсутствии непровара на данной строке. После этого микропроцессор выдает команду на поворот узла зажима и вращения на заданный угол и выдает команду на сканирование следующей строки. По результатам измерения высоты непровара на всех строках сканирования микропроцессорная система принимает решение о годности изделия.

Таким образом, применение способа измерения высоты непровара в сварных швах тонкостенных изделий позволяет повысить чувствительность при выявлении непровара высотой менее 0,15 мм и измерить высоту непровара менее 0,15 мм в тонкостенных изделиях с толщиной стенки менее 1 мм.

Похожие патенты RU2256907C1

название год авторы номер документа
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ КАЧЕСТВА СВАРНЫХ ШВОВ В ТОНКОСТЕННЫХ ИЗДЕЛИЯХ 2003
  • Абиралов Н.К.
  • Александров А.Б.
  • Жуков Ю.А.
  • Калинин А.Н.
  • Лузин А.М.
  • Марченко В.Г.
  • Петров А.Н.
  • Рожков В.В.
RU2256173C1
УСТРОЙСТВО ДЛЯ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ КАЧЕСТВА СВАРНЫХ ШВОВ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ 2002
  • Калинин А.Н.
  • Марченко В.Г.
  • Голубцова Л.М.
  • Лузин А.М.
  • Петров А.Н.
  • Рожков В.В.
  • Абиралов Н.К.
RU2233443C2
АВТОМАТИЧЕСКАЯ ЛИНИЯ ИЗГОТОВЛЕНИЯ ОБОЛОЧКИ ТЕПЛОВЫДЕЛЯЮЩЕГО ЭЛЕМЕНТА 2003
  • Лузин А.М.
  • Петров А.Н.
  • Батуев В.И.
  • Марченко В.Г.
RU2244356C2
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ СТЫКОВЫХ, НАХЛЕСТОЧНЫХ И ТАВРОВЫХ СВАРНЫХ СОЕДИНЕНИЙ ТОНКОСТЕННЫХ ТРУБ МАЛОГО ДИАМЕТРА 2011
  • Стеблев Юрий Иванович
  • Сусарев Сергей Васильевич
  • Тимохин Александр Владимирович
  • Модин Андрей Юрьевич
RU2488108C2
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ДЕФЕКТНОСТИ МЕТАЛЛИЧЕСКОГО ИЗДЕЛИЯ 2019
  • Седнев Дмитрий Андреевич
  • Долматов Дмитрий Олегович
  • Филиппов Герман Алексеевич
  • Ларионов Виталий Васильевич
  • Гаранин Георгий Викторович
  • Лидер Андрей Маркович
RU2723368C1
СПОСОБ ДВУХКАНАЛЬНОГО УЛЬТРАЗВУКОВОГО КОНТРОЛЯ СВАРНЫХ СОЕДИНЕНИЙ С ТЕХНОЛОГИЧЕСКИМ НЕПРОВАРОМ СОЕДИНЯЕМЫХ ДЕТАЛЕЙ 2007
  • Пронякин Владимир Тимофеевич
  • Васильев Михаил Юрьевич
  • Панченко Юрий Николаевич
  • Иваненко Павел Борисович
RU2339031C1
КОМБИНИРОВАННЫЙ СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ КАЧЕСТВА СВАРНЫХ СОЕДИНЕНИЙ 2011
  • Иванов Эдуард Петрович
  • Источинский Данила Андреевич
  • Лобанова Анна Николаевна
RU2481571C1
СПОСОБ КОНТРОЛЯ КАЧЕСТВА СВАРНЫХ ШВОВ ТЕПЛОВЫДЕЛЯЮЩЕГО ЭЛЕМЕНТА 2002
  • Абиралов Н.К.
  • Вихрюк С.И.
  • Голубцова Л.М.
  • Карлов Ю.К.
  • Лузин А.М.
  • Макаров В.И.
  • Рожков В.В.
  • Петров А.Н.
RU2234150C2
УСТРОЙСТВО ДЛЯ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ КАЧЕСТВА ТЕПЛОВЫДЕЛЯЮЩИХ ЭЛЕМЕНТОВ 1998
  • Макаров В.И.
  • Марченко В.Г.
  • Вихрюк С.И.
  • Голубцова Л.М.
  • Абиралов Н.К.
  • Рожков В.В.
  • Чапаев И.Г.
  • Лузин А.М.
  • Жуков Ю.А.
  • Карлов Ю.К.
RU2154819C1
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ИЗДЕЛИЙ ЦИЛИНДРИЧЕСКОЙ ФОРМЫ 1999
  • Жуков Ю.А.
  • Петров А.Н.
  • Марченко В.Г.
  • Милешко В.А.
RU2180111C2

Иллюстрации к изобретению RU 2 256 907 C1

Реферат патента 2005 года СПОСОБ ИЗМЕРЕНИЯ ВЫСОТЫ НЕПРОВАРА В СВАРНЫХ ШВАХ ТОНКОСТЕННЫХ ИЗДЕЛИЙ

Изобретение относится к области неразрушающего контроля. Предложен способ, включающий дискретное вращение изделия, возвратно-поступательное движение над сварным швом сфокусированного на внутренней поверхности изделия пьезопреобразователя с одновременным излучением и приемом ультразвуковых сигналов, фиксацию амплитуды отраженного сигнала и координат положения пьезопреобразователя. Пьезопреобразователь устанавливают под углом к изделию, определяют максимальную амплитуду отраженного сигнала, определяют координаты положения пьезопреобразователя, в которых амплитуда равна 0,25 максимальной амплитуды отраженного сигнала, и производят определение высоты непровара по формуле. Способ позволяет повысить чувствительность при выявлении непровара высотой менее 0,15 мм и измерить высоту непровара менее 0,15 мм в тонкостенных изделиях. 2 ил.

Формула изобретения RU 2 256 907 C1

Способ измерения высоты непровара в сварных швах тонкостенных изделий, включающий дискретное вращение изделия, возвратно-поступательное движение над сварным швом сфокусированного на внутренней поверхности изделия пьезопреобразователя с одновременным излучением и приемом ультразвуковых сигналов, фиксацию амплитуды отраженного сигнала и координат положения пьезопреобразователя, отличающийся тем, что пьезопреобразователь устанавливают под углом к изделию, определяют максимальную амплитуду отраженного сигнала, определяют координаты положения пьезопреобразователя, в которых амплитуда равна 0,25 максимальной амплитуды отраженного сигнала, и производят определение высоты непровара по формуле

где h - высота непровара;

L1, L2 - координаты, на которых амплитуда принятого сигнала равна 0,25 амплитуды максимального сигнала от непровара;

d - диаметр ультразвукового пятна в изделии;

α - угол ввода ультразвуковых колебаний.

Документы, цитированные в отчете о поиске Патент 2005 года RU2256907C1

Способ определения глубины проплавления сварных швов 1980
  • Пронякин Владимир Тимофеевич
  • Дубинин Гераклит Викторович
  • Грушин Сергей Александрович
SU920520A1
СПОСОБ ИЗМЕРЕНИЯ РАЗМЕРОВ ДЕФЕКТОВ ПРИ УЛЬТРАЗВУКОВОМ КОНТРОЛЕ ИЗДЕЛИЙ 2000
  • Чапаев И.Г.
  • Жуков Ю.А.
  • Лузин А.М.
  • Марченко В.Г.
  • Милешко В.А.
  • Петров А.Н.
  • Калинин А.Н.
  • Рожков В.В.
  • Абиралов Н.К.
RU2191376C2
Автоматический ультразвуковой дефектоскоп для контроля сварных швов 1973
  • Авербух Эля Шоилович
  • Григорьев Вадим Михайлович
  • Фокин Игорь Васильевич
  • Хасдан Юлия Борисович
SU537295A1
US 6497150 B1, 24.12.2002
DE 3138659 A1, 17.03.1983
Способ определения глубины непровара сварных швов 1957
  • Румянцев С.В.
SU122331A1
Печь для сжигания твердых и жидких нечистот 1920
  • Евсеев А.П.
SU17A1

RU 2 256 907 C1

Авторы

Марченко В.Г.

Калинин А.Н.

Жуков Ю.А.

Петров А.Н.

Серебрянников О.С.

Абиралов Н.К.

Даты

2005-07-20Публикация

2003-10-16Подача