Изобретение относится к химической промышленности, а более конкретно для извлечения перхлорат-иона из высококонцентрированного технологического раствора, имеющего сложный нитратно-хлоридно-сульфатно-иодатный состав.
В настоящее время известно использование промышленно выпускаемых сильноосновных анионообменных смол на полистирольной и полиакриловой основе в технологиях очистки природных подземных и наземных (ground water and surface water) вод от примесей перхлорат-ионов.
Так, известен способ извлечения перхлорат-иона из водного раствора (см. Batista J.R. et al. - The removal of perchlorate from waters using ion-exchange resins. - "Perchlorate in the Environment". - N.Y., 2000, p.p. 135-145) путем пропускания его через стандартный промышленный высокоосновный анионит в хлоридной форме производства фирм Sybron Chemicals и Purolite и последующей регенерации смолы в водном растворе хлористого натрия.
Недостатком известного способа является низкая селективность извлечения перхлорат-иона из высококонцентрированного раствора сложного солевого состава.
Известен способ извлечения перхлорат-иона из водного раствора (см. патент США №6407143, МПК C 08 J 005/20, опубликован 18.06.2002), включающий пропускание раствора через высокоосновный анионит в хлоридной форме и его последующую регенерацию в составе, включающем жидкий сверхкритический диоксид углерода и поверхностно-активный компонент, содержащий хлориды четвертичных аммонийных оснований (quaternary ammonium chloride surfactants).
Известный способ сложен в осуществлении и к тому же имеет недостаточную эффективность извлечения перхлорат-иона из высоко концентрированного раствора сложного солевого состава.
Известен способ извлечения перхлорат-иона из водного раствора (см. патент США №6448299, МПК B 01 J 49/00, опубликован 10.09.2002), включающий пропускание раствора через специально изготовленный высокоосновный анионит в хлоридной форме и его последующую регенерацию смесью FeCl3 и HCl в водно-спиртовом растворе.
Известный способ требует применения сложной и затратной технологии для регенерации смолы, что ограничивает область его использования.
Наиболее близким по технической сущности и совокупности существенных признаков к заявляемому изобретению является способ извлечения перхлорат-иона из водного раствора (см. патент США №6066257, МПК C 02 F 1/58, опубликован 23.05.2000), включающий пропускание раствора через высокоосновный анионит в хлоридной (Cl-) форме и его последующую регенерацию солями щелочных металлов, главным образом, хлористым натрием (NaCl).
Известный способ-прототип показал недостаточную эффективность при извлечении перхлорат-иона из высококонцентрированного раствора сложного солевого состава.
Задачей изобретения являлась создание такого способа извлечения перхлорат-иона из водного раствора, который бы позволял с высокой степенью эффективности извлекать перхлорат-ион из высококонцентрированного раствора сложного солевого состава.
Поставленная задача решается тем, что в способе извлечения перхлорат-иона из водного раствора, включающем пропускание раствора через высокоосновный анионит и последующую регенерацию упомянутого анионита в водном растворе соли металла, в качестве анионита используют анионит в нитратной форме, а его регенерацию осуществляют в водном растворе нитрата щелочного или щелочноземельного металла при температуре 0-60°С.
Прошедший регенерацию анионит может быть промыт водой и вновь использован для извлечения перхлорат-иона.
При отсутствии промышленно выпускаемого анионита в нитратной форме он может быть получен выдержкой в водном растворе нитрата щелочного металла высокоосновного анионита в хлоридной форме или высокоосновного анионита в основной (ОН-) форме.
В качестве нитрата щелочного металла преимущественно используется нитрат калия или нитрат натрия.
В качестве нитрата щелочноземельного металла целесообразно использовать нитрат магния.
Регенерацию анионита в нитратной форме преимущественно осуществляют при температуре 0-45°С.
Регенерацию анионита в нитратной форме осуществляют в упомянутом водном растворе нитрата щелочного или щелочноземельного металла с концентрацией от 1 масс.% до концентрации насыщения при температуре регенерации.
Проведение регенерации анионита при температуре ниже 0°С приводит к снижению скорости процессов сорбции и регенерации и последующему замерзанию водного раствора нитрата щелочного или щелочноземельного металла. Проведение регенерации анионита при температуре выше 60°С отрицательно отражается на его сорбционных свойствах.
Заявитель не обнаружил в патентной и другой научно-технической литературе описания способа извлечения перхлорат-иона из водного раствора, содержащего совокупность существенных признаков заявляемого способа. По мнению заявителя, это свидетельствует о новизне заявляемого изобретения.
В просмотренных источниках информации не рассматривался вопрос о влиянии формы высокоосновной анионобменной смолы (хлоридной, основной или какой-либо другой) на величину сорбции перхлорат-ионов и степень регенерации смолы. Во всех известных заявителю способах используются промышленно изготовляемые или специально разработанные марки смол в Cl- или ОН- форме.
Авторами впервые получены данные о значительно большей эффективности использования высокоосновной смолы в нитратной (NO3 -) форме для сорбции перхлорат-ионов по сравнению с традиционной хлоридной формой. Этот эффект достигается сочетанием применения смолы в NO3 - форме и использования водных растворов нитратов щелочных и щелочноземельных металлов в качестве регенерирующих растворов.
Проведенное авторами сравнение заявляемого способа с известными, использующими сильноосновные аниониты в Cl- форме и регенерацию раствором хлористого натрия (NaCl), в одинаковых условиях, показало, что при близких значениях величины сорбции перхлорат-иона степень десорбции, определяющая эффективность всей технологии, по заявляемому способу в несколько раз выше. При использовании известного способа-прототипа степень регенерации не превышает 20% даже при повышенной температуре (40°С) и регенерации концентрированным (30%) раствором NaCl, в то время как уже при температуре 20°С регенерация сильноосновного анионита в NO3 - форме раствором NaNO3 достигает 50%, Mg(NO3)2 - около 60%, а регенерация растворами КНО3 в интервале температур от 0 до 40°С достигает 100%.
Таким образом, использование в заявляемом способе сильноосновного анионита в нитратной форме и осуществление его регенерации в водном растворе нитрата щелочного или щелочноземельного металла при температуре 0-60°С обеспечивает повышение эффективности сорбционного извлечения перхлорат-иона из высококонцентрированного раствора сложного солевого состава, что, по мнению заявителя, позволяет считать заявляемое техническое решение удовлетворяющим критерию "изобретательский уровень".
Заявляемый способ извлечения перхлорат-иона из водного раствора поясняется чертежами, где
на фиг.1 в таблице 1 показаны сравнительные результаты измерений динамической обменной емкости сильноосновных анионитов в Cl-и NO3 - формах;
на фиг.2 в таблице 2 приведены сравнительные результаты измерений степени десорбции перхлорат-иона известным способом-прототипом и заявляемым способом (использовалось количество анионита, эквивалентное 5 г сухой смолы);
на фиг.3 в таблице 3 показаны сравнительные результаты измерений степени десорбции перхлорат-иона известным способом по патенту США (№6448299, МПК B 01 J 49/00, опубликован 10.09.2002) и заявляемым способом (использовалось количество анионита, эквивалентное 5 г сухой смолы);
на фиг.4 в таблице 4 приведены результаты исследования нескольких циклов сорбции-десорбции перхлорат-иона заявляемым способом.
Заявляемый способ осуществляют следующим образом. Высококонцентрированный раствор сложного солевого состава, содержащего перхлорат-ион, пропускают через колонку, наполненную высокоосновным анионитом в нитратной форме. Высокоосновный анионит в нитратной форме может быть получен из промышленных гелевых анионитов (АВ-17, Purolite А-400 и т.п.), переведенных из исходной хлоридной формы в нитратную форму. После извлечения перхлорат-иона из раствора проводят регенерацию анионита от перхлорат-иона раствором нитрата щелочного или щелочноземельного металла при температуре от 0 до 60°С. Далее циклы сорбции-десорбции повторяют.
Ниже приводятся примеры осуществления заявляемого способа извлечения перхлорат-иона из водных растворов. Заявляемый способ был апробирован на высококонцентрированных водных солевых растворах, состав которых приведен ниже:
В связи с отсутствием промышленно выпускаемых высокоосновных анионитов в нитратной (NO3 -) форме выпускаемые промышленностью аниониты АВ-17 и Purolite A-400, находящиеся в хлоридной форме, были переведены в нитратную форму. С этой целью 110 г исходного анионита А-400 и 100 г исходного анионита АВ-17 залили 400 мл воды, в которой предварительно растворили 50 г чистого нитрата натрия. После выдерживания в растворе в течение суток растворы слили, аниониты отфильтровали, промыли водой и высушили на воздухе. Полученные таким образом аниониты использовали в последующих экспериментах в качестве анионитов в нитратной форме.
Содержание перхлорат-иона в растворах определяли двумя независимыми аналитическими методами: ЯМР-спектроскопией и с помощью перхлорат-селективного электрода.
Пример 1. Порцию анионита АВ-17 в нитратной форме в количестве 5 г поместили в экспериментальную колонку и пропустили через нее технологический раствор указанного выше состава в количестве 400 мл при температуре 20°С. В собранных в процессе извлечения пробах определяли содержание перхлорат-иона, которое (в пересчете на KCiO4) составило 1,003 г, а емкость воздушно-сухого анионита АВ-17 в нитратной форме составила 1,40 ммоль/г. Результаты эксперимента приведены в таблице 1 на фиг.1 (строка 2). Далее через 5 г анионита АВ-17, насыщенного перхлорат-ионом, пропускали свободный от перхлорат-иона 18%-ный раствор нитрата калия в количестве 200 мл при скорости потока 0,7 мл/мин. В собранных в процессе регенерации пробах определяли содержание перхлорат-иона и степень его извлечения, которая составила 95% (см. таблицу 2, строка 3 на фиг.2).
Пример 2. Определяли сорбцию перхлорат-иона, как в примере 1, но десорбцию проводили 10%-ным раствором нитрата калия в количестве 300 мл при скорости потока 1,0 мл/мин. Результаты эксперимента приведены в таблице 2 на фиг.2 (строка 4).
Пример 3. Определяли сорбцию перхлорат-иона, как в примере 1, но десорбцию проводили 24%-ным раствором нитрата калия в количестве 200 мл при скорости потока 1,0 мл/мин. Результаты эксперимента приведены в таблице 2, строка 5 на фиг.2.
Пример 4. Порцию анионита Purolite A-400 в нитратной форме в количестве 5 г поместили в экспериментальную колонну и пропустили через нее технологический раствор указанного выше состава в количестве 400 мл при температуре 20°С. В собранных в процессе извлечения пробах определяли содержание перхлорат-иона. Результаты эксперимента приведены в таблице 1, строка 4 на фиг.1. Далее через 5 г анионита Purolite A-400, насыщенного перхлорат-ионом, пропускали свободный от перхлорат-иона 10%-ный раствор нитрата калия в количестве 300 мл. В собранных в процессе регенерации пробах определяли содержание перхлорат-иона и степень его извлечения, которая составила 79% (см. таблицу 2, строка 6 на фиг.2).
Пример 5. Определяли сорбцию и десорбцию перхлорат-иона, как в примере 4, но при температуре 40°С. Результаты приведены в таблице 1, строка 5 (фиг.1) и в таблице 2, строка 6 (фиг.2).
Пример 6. Определяли сорбцию и десорбцию перхлорат-иона, как в примере 4, но сорбцию проводили при температуре 60°С, а десорбцию при температуре 3°С. Результаты приведены в таблице 1, строка 6 (фиг.1) и в таблице 2, строка 6 (фиг.2).
Пример 7. Определяли сорбцию перхлорат-иона при температуре 1°С, а десорбцию осуществляли 14%-ным раствором KNO3 при температуре 3°С. Результаты приведены в таблице 1, строка 7 (фиг.1) и в таблице 2, строка 7 (фиг.2).
Примеры 8 и 9. Определяли сорбцию перхлорат-иона при температуре 20°С, а десорбцию осуществляли 24%-ным раствором KNO3 при температуре 20 и 40°С. Результаты приведены в таблице 1, строка 4 (фиг.1) и в таблице 2, строка 8 (фиг.2).
Пример 10. Определяли сорбцию перхлорат-иона, как в примере 1, но десорбцию проводили 16%-ным раствором нитрата натрия в количестве 100 мл при скорости потока 2,5 мл/мин. Результаты эксперимента приведены в таблице 2, строка 9 на фиг.2.
Пример 11. Определяли сорбцию перхлорат-иона, как в примере 1, но десорбцию проводили раствором нитрата магния молярностью 3.3 в количестве 200 мл при скорости потока 0,8 мл/мин. Результаты эксперимента приведены в таблице 2, строка 10 на фиг.2.
Примеры 12 и 13. Для сравнения провели по способу-прототипу сорбцию перхлорат-иона на анионитах АВ-17 и Purolite A-400 в хлоридной форме и десорбцию раствором хлористого натрия. Результаты приведены в таблице 1, строки 1 и 3 (фиг.1) и в таблице 2, строки 1 и 2 (фиг.2). Как видно из приведенных данных, заявляемый способ имеет более высокую эффективность сорбционного извлечения перхлорат-иона из высококонцентрированного раствора сложного солевого состава и несравнимо большую глубину извлечения перхлорат-иона из анионита.
Было проведено также сравнение эффективности десорбции по заявляемому способу и известному способу, описанному в патенте США №6448299, в котором осуществляют десорбцию перхлорат-иона хлорным железом в вводно-спиртовом солянокислом растворе из смолы в хлоридной форме. Результаты сравнительных испытаний, приведенные в таблице 3 на фиг.3, показывают значительно более высокую степень десорбции по заявляемому способу.
Для оценки возможности многократного использования высокоосновного анионита в нитратной форме были проведены исследования нескольких циклов сорбции-десорбции перхлорат-иона на анионите АВ-17 в нитратной форме 15%-ными растворами KNO3 при 20°С и на анионите Purolite A-400 в нитратной форме 25%-ными растворами KNO3 при температуре 40°С. Результаты исследований приведены в таблице 4 на фиг.4. Полученные данные свидетельствуют о целесообразности многократного использования анионита без заметного ухудшения эффективности заявляемого способа.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗВЛЕЧЕНИЯ РЕНИЯ ИЗ УРАНОВЫХ РАСТВОРОВ | 2016 |
|
RU2627838C1 |
СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ (II, IV), РОДИЯ (III) И НИКЕЛЯ (II) В ХЛОРИДНЫХ РАСТВОРАХ | 2013 |
|
RU2527830C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ И РАЗДЕЛЕНИЯ ПЛАТИНЫ И РОДИЯ В СУЛЬФАТНЫХ РАСТВОРАХ | 2012 |
|
RU2479651C1 |
СПОСОБ ПЕРЕРАБОТКИ РАСТВОРОВ ПОСЛЕ КАРБОНАТНОЙ ПЕРЕРАБОТКИ ВОЛЬФРАМОВЫХ РУД | 2016 |
|
RU2633677C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ РЕНИЯ ИЗ НИТРАТНО-СУЛЬФАТНЫХ РАСТВОРОВ | 1996 |
|
RU2093596C1 |
СПОСОБ ОТДЕЛЕНИЯ ПЛАТИНЫ (II, IV) И ПАЛЛАДИЯ (II) ОТ СЕРЕБРА (I), ЖЕЛЕЗА (III) И МЕДИ (II) В СОЛЯНОКИСЛЫХ РАСТВОРАХ | 2019 |
|
RU2694855C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ИОНОВ СВИНЦА Pb ИЗ КИСЛЫХ РАСТВОРОВ | 2008 |
|
RU2393244C1 |
СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ (II, IV) И РОДИЯ (III) В СОЛЯНОКИСЛЫХ ВОДНЫХ РАСТВОРАХ | 2010 |
|
RU2439175C1 |
СПОСОБ ИОНООБМЕННОГО РАЗДЕЛЕНИЯ ИОНОВ МЕДИ (II) И НИКЕЛЯ (II) | 2011 |
|
RU2466101C1 |
СПОСОБ ПОЛУЧЕНИЯ ПАРАВОЛЬФРАМАТА АММОНИЯ | 2015 |
|
RU2600045C1 |
Изобретение относится к химической промышленности и может быть использовано для извлечения перхлорат-иона из высококонцентрированного технологического раствора сложного солевого состава. Раствор, содержащий перхлорат-ион, пропускают через высокоосновной анионит в нитратной форме. Регенерацию анионита осуществляют в водном растворе нитрата щелочного или щелочно-земельного металла с концентрацией от 1 масс.% до концентрации насыщения при температуре 0-60°С. После регенерации анионит промывают водой для повторного использования. При отсутствии промышленно выпускаемого анионита в нитратной форме он может быть получен выдержкой в водном растворе нитрата щелочного металла высокоосновного анионита в хлоридной или основной (ОН-) форме. Изобретение позволяет повысить эффективность сорбционного извлечения перхлорат-иона. 8 з.п. ф-лы, 4 табл.
US 6066257 А, 23.05.2000 | |||
СПОСОБ РАЗДЕЛЕНИЯ НИТРАТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ЦЕРИЕВОЙ ГРУППЫ | 0 |
|
SU191505A1 |
Способ очистки газов от паров фенола | 1980 |
|
SU927281A1 |
Способ регенерации анионитов,отравленных кремнием | 1982 |
|
SU1074589A1 |
Способ обработки воды | 1989 |
|
SU1666450A1 |
US 6407143 B1, 18.06.2002 | |||
US 6448299 В1, 10.09.2002 | |||
АШИРОВ А | |||
Ионообменная очистка сточных вод, растворов и газов | |||
Л.: Химия, Ленинградское отделение, 1983, с.157-170. |
Авторы
Даты
2005-10-27—Публикация
2004-07-01—Подача