ИНСТРУМЕНТАЛЬНАЯ ШТАМПОВАЯ СТАЛЬ Российский патент 2006 года по МПК C22C38/52 

Описание патента на изобретение RU2274673C2

Изобретение относится к металлургии, а именно к разработке инструментальной штамповой стали для штампов холодного деформирования повышенной производительности и технологического оборудования.

Известна инструментальная штамповая сталь Х6ВФ ГОСТ 5950-73. Сортовой прокат. [Марочник сталей и сплавов / Под ред. В.Г.Сорокина // М.: Машиностроение, 1989. С.384] следующего химического состава:

Углерод1,05-1,15Хром5,5-6,5Вольфрам1,1-1,5Молибден0,01-0,3Ванадий0,5-0,8Марганец0,15-0,40Кремний0,15-0,35Никель0,01-0,35Фосфор0,001-0,03Сера0,001-0,03Медь0,001-0,3

Известна другая инструментальная штамповая сталь Х12Ф1 ГОСТ 5950-73. Сортовой прокат. [Марочник сталей и сплавов / Под ред. В.Г.Сорокина // М.: Машиностроение, 1989. С.388] следующего химического состава:

Углерод1,25-1,45Хром11,0-12,5Ванадий0,7-0,9Марганец0,15-0,40Кремний0,15-0,35Никель0,01-0,35Фосфор0,001-0,03Сера0,001-0,03Медь0,001-0,3

Известные стали после термической обработки: закалка + отпуск имеют высокую прочность и удовлетворительную вязкость и используются для изготовления инструментов холодной обработки давлением [Геллер Ю.А. Инструментальные стали /М.: Металлургия, 1983. С.298], [Материаловедение /Под ред. Б.Н.Арзамасова, Г.Г.Мухина, МГТУ им. Н.Э.Баумана, 2002, с.624-627].

Однако указанные стали обладают недостаточно высокой износостойкостью. Стали характеризуются низкой теплостойкостью. Известные стали не применяются для сварных конструкций [Марочник сталей и сплавов / Под ред. В.Г.Сорокина // М.: Машиностроение, 1989. С.386, 389].

Стали имеют недостаточно высокие характеристики шлифуемости из-за наличия аустенита в структуре. Например, шлифуемость стали Х6ВФ ГОСТ 5950-73 при HRC 57-59 - удовлетворительная, при HRC 59-61 - пониженная, а при HRC 63-65 - низкая. Шлифуемость стали Х12Ф1 ГОСТ 5950-73 - удовлетворительная [Марочник сталей и сплавов /Под ред. В.Г.Сорокина // М.: Машиностроение, 1989]. В результате процесс характеризуется низкой производительностью съема стали без перегрева. Возможно образование дефектов: прижогов, сетки трещин.

Обрабатываемость резанием невысокая: у стали Х6ВФ при НВ 229 Кϑтв.спл=0,9, Kϑб.ст.=0,5, а у стали Х12Ф1 при НВ 217-228: Кϑтв.спл=0,8, Кϑб.ст.=0,3.

Наиболее близкой к предлагаемой инструментальной штамповой стали является инструментальная сталь [ЕР 1072691, МПК С 22 С 38/22, С 22 С 38/24. Tool steel with excellent workability, machinability and heat treatment characteristics, and die using same / Hitachi Metals], принятая за прототип.

Сталь имеет следующий химический состав, мас.%:

Углерод0,55-0,75Хром6,8-8,0Молибден0,4-0,83Вольфрам0,2-0,42Ванадий0,01-0,5Марганец0,1-1,2Кремний1,0-0,6Никель0,01-0,4Алюминий0,01-0,6Кальций0,00001-0,0001Сера0,001-0,12ЖелезоОстальное

Сталь отличается хорошей свариваемостью, обрабатываемостью при деформации и термообрабатываемостью без ухудшения механических свойств.

Однако известная сталь имеет низкую твердость (после термической обработки ≥57 HRC), недостаточно высокую теплостойкость (HRC57 уже при 500°С) и сравнительно низкую износостойкость. Кроме того, желательно дополнительное повышение технологических свойств: обрабатываемости резанием и шлифуемости.

Технической задачей настоящего изобретения является создание инструментальной штамповой стали с высокой твердостью, теплостойкостью, износостойкостью, обрабатываемостью резанием и шлифуемостью, обеспечивающей высокую надежность изделий, выполняемых из этой стали.

Для достижения поставленной задачи предложена инструментальная штамповая сталь, содержащая углерод, хром, вольфрам, молибден, ванадий, марганец, кремний, никель, алюминий, серу, железо, в которой согласно изобретению она дополнительно содержит кобальт при следующем соотношении компонентов, мас.%:

Углерод0,75-0,9Хром6,8-8,0Вольфрам1,1-1,5Молибден5,0-6,0Ванадий0,01-0,5Кобальт5,0-6,0Марганец0,1-1,2Кремний0,1-0,6Никель0,01-0,4Алюминий0,01-0,6Сера0,15-0,35ЖелезоОстальное

Подобранное соотношение компонентов позволяет получить стабильную мелкодисперсную структуру стали (балл зерна 10-11) с высокими технологическими и эксплуатационными характеристиками.

Содержание углерода в указанном интервале (0,75-0,9%) обеспечивает высокую вторичную твердость, теплостойкость и износостойкость стали. Сталь при нагреве под закалку получает аустенит, богатый углеродом, что усиливает эффект дисперсионного твердения при отпуске, повышая вторичную твердость и несколько меньше теплостойкость. Износостойкость возрастает в результате повышения твердости отпущенного мартенсита. Содержание углерода ниже указанного предела снижает твердость, теплостойкость и износостойкость. Содержание углерода больше верхнего предела может привести к снижению прочности и вязкости стали (из-за роста размеров карбидных частиц и ухудшения условий их распределения), что дополнительно усиливается влиянием масштабного фактора.

Содержание хрома (6,8-8,0%) необходимо для обеспечения прокаливаемости стали. Содержание хрома ниже указанного нижнего предела ухудшает технологичность стали при термической обработке. Содержание хрома больше указанного верхнего предела снижает прочность и вязкость стали из-за ухудшения условий распределения карбидов.

Вольфрам в интервале 1,1-1,5% (на порядок выше, чем у прототипа), как карбидообразующий элемент, обеспечивает высокую твердость, теплостойкость и износостойкость стали. Содержание ниже указанного интервала снижает отмеченные свойства стали. Содержание вольфрама больше указанного верхнего предела неэффективно с точки зрения рационального легирования вольфрамомолибденовых сталей.

Приведенная концентрация молибдена 5,0-6,0% (на порядок по сравнению с прототипом) и наличие кобальта (5,0-6,0%) необходимы для связывания серы в мелкодисперсные, равномерно распределенные сульфиды глобулярной формы с целью предупреждения химической неоднородности и ликваций. Сульфиды являются "масленками", образуя защитные смазывающие пленки на поверхности контакта изделия с обрабатываемым металлом. Образование сульфидных пленок улучшает шлифуемость стали: повышается чистота поверхности, снижается чувствительность к образованию шлифовочных трещин даже при наличии аустенита в структуре стали. Улучшается обрабатываемость резанием. Появляется возможность дополнительного увеличения режимов обработки шлифованием и резанием. Кроме того, введение кобальта и молибдена в количестве 5,0-6,0% создает дисперсионное упрочнение стали, повышая твердость, теплостойкость и износостойкость. Минимальное содержание молибдена и кобальта определено степенью эффективности воздействия элементов. Содержание кобальта больше указанного верхнего предела снижает прочность и вязкость стали. Ухудшаются технологические свойства: шлифуемость и обрабатываемость резанием. Содержание молибдена выше указанного верхнего предела может вызвать технологические дефекты стали: чувствительность к обезуглероживанию при отжиге и закалке, чувствительность к излишнему росту зерна (разнозернистости в отдельных участках микроструктуры) при нагреве под закалку, что ухудшает механические свойства стали.

Ванадий (0,01-0,5%) повышает твердость, теплостойкость, износостойкость стали за счет усиления эффекта дисперсионного твердения при отпуске. Превышение указанного верхнего предела нерационально с точки зрения эффективности легирования.

Марганец (0,1-1,2%) способствует повышению твердости стали. Содержание больше указанного верхнего предела ухудшает свариваемость стали.

Кремний по нижней границе указанного интервала (0,1-0,6%) необходим как раскислитель для улучшения свариваемости. В указанных пределах повышает литейные свойства. Содержание кремния выше указанного предела ухудшает термообрабатываемость (изменение размеров изделия) вследствие образования цементитной фазы.

Никель (0,01-0,4%) может вводиться для повышения обрабатываемости стали. При содержании никеля больше указанного верхнего предела возможно ухудшение ударной вязкости и свариваемости.

Алюминий (0,01-0,6%) может вводиться как раскислитель для улучшения свариваемости стали. Содержание алюминия больше указанного верхнего предела снижает технологические свойства стали.

Легирование серой в количестве 0,15-0,35%, что в три раза больше по верхнему пределу, чем у прототипа, обеспечивает надежное образование защитных сульфидных пленок на поверхности штампов в процессе эксплуатации. Пленки уменьшают адгезию инструментальной штамповой стали с обрабатываемым металлом, что способствует повышению износостойкости штампа. Нижний предел содержания серы ограничивается эффективностью ее воздействия как пленкообразующего элемента. Содержание серы больше указанного верхнего предела не дает значимого снижения адгезии в зоне контакта штамповой стали с обрабатываемым металлом и снижает прочностные и эксплуатационные характеристики изделия.

Таким образом, использование предложенной стали позволит изготавливать штампы для холодного деформирования и технологическое оборудование повышенной надежности и производительности за счет повышения их эксплуатационных характеристик: твердости, теплостойкости и износостойкости. Улучшенные характеристики обрабатываемости резанием и шлифуемости стали позволят повысить технологичность и производительность процессов изготовления штампов. Хорошая свариваемость стали расширит технологические возможности изготовления, восстановления и упрочнения штампов и другого технологического оборудования за счет производства сварных конструкций и конструкций с наплавленной рабочей частью.

Инструментальную штамповую сталь получали в лабораторных условиях электродуговой наплавкой порошковой проволоки в среде аргона на заготовки из стали 30ХГСА ГОСТ 4543-71. Основные параметры режима наплавки: I=180-200 А, U=24-25 В, υ=6-8 м/ч.

Порошковая проволока представляла собой трубку с оболочкой из холоднокатаной ленты глубокой вытяжки 08Ю ГОСТ 503-81, заполненную порошками легирующих элементов (шихтой) в определенном соотношении компонентов. Состав шихты (наличие и соотношение компонентов) рассчитывался по имеющейся методике исходя из требуемого химического состава получаемой инструментальной штамповой стали. Диаметр порошковой проволоки d=2 мм, kз=0,48-0,50. Порошковые проволоки изготавливались на стане по малотоннажному производству порошковой проволоки в лабораторных условиях. В процессе наплавки при расплавлении порошковой проволоки (оболочки и шихты) и нанесении ее на низколегированную конструкционную сталь получали штамповые стали указанного химического состава (табл.1).

Закалка инструментальной штамповой стали выполнялась в процессе наплавки. Термическая обработка заключалась в выполнении 3-кратного отпуска по 1 часу при 560°С. Охлаждение с температур расплава при наплавке позволило обеспечить более высокие скорости охлаждения стали по сравнению с прототипом (где закалка выполнялась от 1000-1050°С), а следовательно, получить более высокую твердость, теплостойкость, износостойкость, чем у прототипа [Материаловедение / Под ред. Б.Н.Арзамасова, Г.Г.Мухина, МГТУ им. Н.Э.Баумана, 2002, с.624-627; 614-619].

Введение кобальта дополнительно повысило твердость инструментальной штамповой стали за счет интерметаллидного упрочнения. Максимальная твердость стали после наплавки (с закалкой) и отпуска составила ≤69 HRC. Теплостойкость стали после термической обработки: HRC 59 при ≤630°С (табл.2).

Предложенная сталь обладает более высокими технологическими свойствами: обрабатываемостью резанием (табл.3-6) и шлифуемостью (табл.7) по сравнению с прототипом благодаря наличию защитных смазывающих пленок (создаваемых комплексным легированием стали серой, молибденом и кобальтом при указанном соотношении компонентов). Кроме того, благодаря подобранному химическому составу сталь обладает хорошей свариваемостью (табл.8-9) и термообрабатываемостью. Изменение линейных размеров изделия при термической обработке при температуре ≥560°С не превышает 0,1%, а после отпуска при 520°С изменение размеров имеет нулевое значение (табл.10).

Инструментальная штамповая сталь может выплавляться в электропечах [Технология конструкционных материалов. / Под ред. А.М.Дальского // М.: Машиностроение, 2003. С.41-44].

Данное изобретение в настоящее время находится на стадии опытно-промышленных испытаний.

Таблица 1
Химический состав сталей, % по массе
СтальСCrWМоVСоMnSiNiAlSFe1Предложенная0,98,01,55,00,35,00,40,40,010,30,3577,8420,87,01,25,50,56,01,20,10,010,60,2576,8430,756,81,16,00,45,50,80,30,010,40,1577,791 *0,657,252,4<0,01<0,01-0,50,15--0,015ост.2 *Прототип0,757,911,050,350,25-0,350,300,004-0,1нет данных3 *0,727,37<0,011,250,35-0,290,25--0,135ост.1*, 2*, 3* - №10, №12, №24 по прототипу соответственно.Таблица 2
Твердость, теплостойкость
СтальТвердость (HRC)Теплостойкость (°С, HRC59)1Предложенная686402666303656201Прототип 57-59 <50023

Таблица 3
Обрабатываемость резанием. Условия испытаний
НаименованиеУсловия испытанийпрототипнастоящее изобретениеИнструмент2NKR10 (из быстрорежущей стали)Р6М5К5Скорость резания25 м/мин28 м/минПодача0,08 мм/об0,08 мм/обГлубина резания0,8×1,5 мм0,8×1,5 ммВид операцииточениеточениеОхлаждениебез охлаждениябез охлажденияОбрабатываемая стальпосле отжигаТаблица 4
Обрабатываемость резанием.
СтальСтойкость инструмента (до наступления износа 0,3 мм)1Предложенная22 м222 м322 м1Прототип18 м2-3-

Таблица 5
Обрабатываемость резанием. Условия испытаний
НаименованиеУсловия испытанийпрототипнастоящее изобретениеИнструментHES2100-C (с твердосплавным покрытием)Т15К6Скорость резания75 м/мин75 м/минПодача0,05 мм/об0,08 мм/обГлубина резания0,2×1,5 мм0,2-1,8 мм/обВид операцииточениеточениеОхлаждениебез охлаждениябез охлажденияСтальпосле отжигаТаблица 6
Обрабатываемость резанием
СтальСтойкость инструмента (до наступления износа покрытия 0,1 мм)1Предложенная19 м219 м319 м1Прототип16 м2-3-

Таблица 7
Шлифуемость
СтальТвердость (HRC)1Предложеннаяхорошая2хорошая3хорошая1Прототип-2-3-

Таблица 9
Свариваемость
СтальТвердость (HRC)Температура предварительного подогрева (°С)Свариваемость (трещины)1Предложенная68-нет трещин266-нет трещин365-нет трещин1Прототип---260,1350нет трещин358,5350нет трещинТаблица 10
Изменение размеров изделия при термической обработке
СтальКоэффициент линейного расширения,%Т<500°СТ≥500°С1Предложенная0<0,1231Прототип0<0,123

Похожие патенты RU2274673C2

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ШТАМПА 2004
  • Зубкова Елена Николаевна
  • Зубков Николай Семенович
  • Золотов Александр Александрович
  • Булкин Дмитрий Валерьевич
RU2279956C1
ШТАМПОВЫЙ СПЛАВ 2014
  • Бутыгин Виктор Борисович
  • Демидов Александр Станиславович
RU2550071C1
ШИХТА ПОРОШКОВОЙ ПРОВОЛОКИ 1995
  • Зубкова Елена Николаевна
  • Тютяев Вячеслав Алексеевич
RU2088392C1
Инструментальная сталь 2015
  • Собачкина Лариса Джумаевна
  • Бутыгин Виктор Борисович
RU2611250C1
НОЖ ДЛЯ РЕЗКИ МЕТАЛЛА 2008
  • Кадошников Владимир Иванович
  • Бердников Сергей Николаевич
  • Аксёнова Мария Владимировна
  • Коток Алексей Петрович
  • Павлова Наталья Григорьевна
  • Никитин Сергей Витальевич
  • Емелюшин Алексей Николаевич
  • Валишина Татьяна Сергеевна
  • Молочкова Ольга Сергеевна
RU2409695C2
СПОСОБ УПРОЧНЕНИЯ РАЗДЕЛИТЕЛЬНОГО ШТАМПА 2007
  • Зубкова Елена Николаевна
  • Елицкий Михаил Николаевич
  • Зубков Николай Семенович
  • Водопьянова Валентина Павловна
  • Булавкин Сергей Владимирович
RU2342445C1
Штамповая сталь 1987
  • Дудецкая Лариса Романовна
  • Ткачева Валентина Александровна
  • Арефьева Ольга Николаевна
  • Приходько Николай Николаевич
  • Морозова Ирина Ивановна
  • Кучер Арнольд Аркадьевич
  • Крохотин Владимир Леонидович
  • Немировский Марк Рахимович
  • Звигинцев Николай Васильевич
  • Урбан Татьяна Петровна
SU1504283A1
Инструментальная сталь с интерметаллидным упрочнением 2015
  • Собачкина Лариса Джумаевна
  • Бутыгин Виктор Борисович
  • Околович Геннадий Андреевич
  • Демидов Александр Станиславович
RU2620233C1
Инструментальная сталь 1990
  • Филимонов Виктор Николаевич
  • Киреев Владимир Борисович
  • Грубман Александр Иосифович
  • Клыпин Борис Алексеевич
  • Степанов Василий Петрович
  • Мелькумов Игнат Николаевич
  • Касаточкина Татьяна Николаевна
SU1733497A1
Штамповая сталь 1981
  • Кривошеев Моисей Ильич
  • Рязанов Анатолий Степанович
  • Толпегин Алексей Андреевич
  • Бойцев Александр Ильич
  • Соболев Владимир Федорович
  • Беленицкий Александр Михайлович
  • Подпругин Владимир Николаевич
  • Захаров Валентин Владимирович
  • Басси Эдуард Фредерикович
  • Гедгафов Борис Хажбиевич
  • Суворов Александр Сергеевич
  • Казаков Генрих Илларионович
SU1032038A1

Реферат патента 2006 года ИНСТРУМЕНТАЛЬНАЯ ШТАМПОВАЯ СТАЛЬ

Изобретение относится к металлургии, а именно к разработке инструментальной штамповой стали для штампов холодного деформирования повышенной производительности и технологического оборудования. Предложена инструментальная штамповая сталь, содержащая углерод, хром, вольфрам, молибден, ванадий, кобальт, марганец, кремний, никель, алюминий, серу, железо. Изобретение направлено на повышение твердости, теплостойкости, износостойкости, обрабатываемости резанием и шлифуемости без ухудшения свариваемости, термообрабатываемости. Высокие показатели износостойкости, обрабатываемости резанием и шлифуемости инструментальной штамповой стали обеспечиваются защитными сульфидными пленками, образующимися на рабочих поверхностях изделий (штампов, технологического оборудования) в процессе эксплуатации благодаря комплексному легированию стали серой, молибденом и кобальтом при определенном соотношении компонентов. Высокие значения твердости и теплостойкости стали достигаются за счет дисперсионного упрочнения при легировании кобальтом и молибденом. 10 табл.

Формула изобретения RU 2 274 673 C2

Инструментальная штамповая сталь, содержащая углерод, хром, вольфрам, молибден, ванадий, марганец, кремний, никель, алюминий, серу, железо, отличающаяся тем, что она дополнительно содержит кобальт при следующем соотношении компонентов, мас.%:

Углерод0,75-0,9Хром6,8-8,0Вольфрам1,1-1,5Молибден5,0-6,0Ванадий0,01-0,5Кобальт5,0-6,0Марганец0,1-1,2Кремний0,1-0,6Никель0,01-0,4Алюминий0,01-0,6Сера0,15-0,35ЖелезоОстальное

Документы, цитированные в отчете о поиске Патент 2006 года RU2274673C2

ЕР 1072691 А2, 31.01.2001
Инструментальная сталь 1980
  • Ковальчук Александр Владимирович
  • Скрынченко Юрий Михайлович
  • Позняк Леонид Александрович
  • Капун Владлен Яковлевич
  • Соловьев Александр Антонович
SU968095A1
US 4116685 А, 26.09.1978
СПОСОБ КУЛЬТИВИРОВАНИЯ МИКРООРГАНИЗМОВ И АППАРАТ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1991
  • Корнеев А.Д.
  • Алибеков К.Б.
  • Жженова А.В.
  • Салятов Ю.П.
  • Громов Г.А.
RU2008347C1
DE 3744550 А1, 22.09.1988
Планетарный шариковый редуктор 1972
  • Гасюк Иван Платонович
  • Шилов Павел Михайлович
  • Гасюк Леонид Иванович
SU516857A1

RU 2 274 673 C2

Авторы

Зубкова Елена Николаевна

Водопьянова Валентина Павловна

Зубков Николай Семенович

Марков Михаил Владимирович

Даты

2006-04-20Публикация

2004-06-29Подача