Изобретение относится к области черной металлургии, в частности к составам инструментальных сталей, используемых для изготовления режущего и штампового инструмента, работающего при умеренных и высоких скоростях резания.
Известна инструментальная сталь Р6М3, содержащая углерод, кремний, марганец, хром, вольфрам, ванадий, молибден, железо при следующем соотношении компонентов, мас. %: углерод - 0,85-0,95; кремний - менее 0,5; марганец - менее 0,4; хром - 3,0-6,0; вольфрам - 5,5-6,5; ванадий - 2,0-2,5; молибден - 3,0-3,6; железо - остальное (Позняк Л.А. Инструментальные стали: справочник / Л.А. Позняк, С.И. Тишаев, Ю.М. Скрынченко, Ю.Н. Кузьменко и др. - М.: Металлургия, 1977. - С. 129.; Геллер, Ю.А. Инструментальные стали / Ю.А. Геллер. - М.: Металлургия, 1975. - С. 377, табл. 83).
Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению (прототипом) является инструментальная сталь Р6М5, содержащая углерод, кремний, марганец, хром, вольфрам, ванадий, молибден и железо при следующем соотношении компонентов, мас. %: углерод - 0,80-0,88; кремний - менее 0,5; марганец - менее 0,4; хром - 3,8-4,4; вольфрам - 5,5-6,5; ванадий - 1,7-2,1; молибден - 5,0-5,5; железо - остальное (Позняк Л.А. Инструментальные стали: справочник / Л.А. Позняк, С.И. Тишаев, Ю.М. Скрынченко, Ю.Н. Кузьменко и др. - М.: Металлургия, 1977. - С. 127-128).
Общими недостатками описанных сталей являются пониженные механические свойства, а именно прочность и ударная вязкость (Таблица).
Задачей изобретения является повышение прочности и ударной вязкости, при сохранении высокой теплостойкости.
Поставленная задача решается тем, что инструментальная сталь, содержащая углерод, кремний, марганец, хром, вольфрам, ванадий, молибден и железо, согласно изобретению дополнительно содержит кобальт, титан, никель, медь, алюминий и азот при следующем соотношении компонентов мас. %:
Повышение прочности и ударной вязкости при сохранении высокой теплостойкости (Таблица) обусловлены комплексным легированием стали предложенного состава.
Содержание углерода в количестве 0,30-0,35 мас. % является оптимальным, так как обеспечивает достаточное количество упрочняющей фазы, повышая прочность и ударную вязкость. При содержании углерода менее чем 0,30 мас. % снижается твердость. Содержание углерода выше чем 0,35 мас. % в присутствии марганца приводит к увеличению чувствительности к перегреву при закалке, снижению прочности и ударной вязкости.
Введение в сталь кремния в количестве 1,3-1,4 мас. % является оптимальным, так как при таком содержании кремния проявляется его влияние на вторичную твердость при отпуске. Повышается легированность твердого раствора, а также в присутствии хрома повышается устойчивость стали против отпуска. При содержании кремния менее 1,3 мас. % снижается его влияние на вторичную твердость. При содержании кремния более 1,4 мас. % снижается прочность и ударная вязкость стали.
Введение в состав стали марганца, в количестве 1,30-1,45 мас. % является оптимальным, так как способствует увеличению прокаливаемости стали и устойчивости к распаду аустенита, что позволяет использовать сталь для горячей обработки. При предлагаемом количестве марганца повышается устойчивость против отпуска, которая увеличивается в присутствии хрома в составе стали. При содержании марганца менее чем 1,30 мас. % снижается прокаливаемость стали, а при содержании марганца более чем 1,45 мас. % снижается прочность и ударная вязкость.
Введение в состав стали хрома в количестве 8,0-8,5 мас. % является оптимальным, так как при этом увеличивается сопротивление стали окислению при высоких температурах (окалиностойкость) и повышается способность к дисперсионному твердению; наличие хрома в указанном количестве затрудняет рост зерна при нагреве, повышает механические свойства стали при статической и ударной нагрузке, повышает прокаливаемость и жаропрочность стали. При содержании хрома ниже чем 8,0 мас. % в стали снижается количество карбидов хрома, которые участвуют в процессе упрочнения, а при содержании хрома более чем 8,5 мас. % происходит резкое снижение теплостойкости и жаропрочности стали.
Введение в состав стали вольфрама в количестве 5,5-6,0 мас. % является оптимальным, так как способствует выделению упрочняющей фазы при отпуске, что приводит к повышению твердости и теплостойкости стали. Содержание вольфрама ниже чем 5,5 мас. % приводит к снижению количества упрочняющей фазы при отпуске, что уменьшает теплостойкость и твердость стали. Содержание в стали вольфрама более чем 6,0 мас. % увеличивает количество упрочняющей фазы при отпуске, что уменьшает прочность и пластичность стали.
Введение в состав стали ванадия в количестве 0,7-0,8 мас. % является оптимальным, так как способствует измельчению зерна и повышению окалиностойкости стали. При содержании ванадия ниже чем 0,7 мас. % его влияние на измельчение зерна проявляется незначительно, а содержание ванадия выше чем 0,8 мас. % ухудшает шлифуемость стали и снижает прочность.
Введение в состав стали молибдена в количестве 2,0-2,5 мас. % в присутствии предлагаемого количества вольфрама является оптимальным, так как способствует повышению температуры рекристаллизации γ - твердого раствора и замедляет разупрочнение стали, а также приводит к увеличению пластичности и прочности стали, повышает твердость, участвуя в образовании упрочняющей фазы при высоких температурах. Применение предлагаемого количества молибдена с предлагаемым количеством ванадия и хрома значительно повышает окалиностойкость стали. Содержание молибдена ниже чем 2,0 мас. % и выше чем 2,5 мас. % нецелесообразно, так как не оказывает влияния на повышение прочностных свойств и пластичности стали.
Введение в состав стали кобальта в количестве 0,01-0,03 мас. % является оптимальным, так как способствует выделению интерметаллидов при высоких температурах отпуска, повышая твердость, теплостойкость, и улучшает жаропрочность стали. Содержание кобальта менее чем 0,01 мас. % нецелесообразно, так как не приводит к повышению теплостойкости и твердости стали. Содержание кобальта более чем 0,03 мас. % увеличивает количество упрочняющей фазы, что отрицательно влияет на пластичность стали.
Введение в состав стали титана в количестве 0,01-0,02 мас. % является оптимальным, препятствующим возникновению межкристаллитной коррозии, с одновременным увеличением карбидной фазы. Снижение содержания титана меньше чем 0,01 мас. % нецелесообразно, так как при этом не оказывается влияние на межкристаллитную коррозию. Увеличение содержания титана свыше 0,02 мас. % приводит к снижению вязкости стали.
Введение в состав стали никеля в количестве 8,5-8,8 мас. % является оптимальным, так как способствует повышению вязкости, усиливает противодействие росту зерна, улучшает прокаливаемость и механические свойства стали, повышает окалиностойкость и жаропрочность. Снижение содержания никеля ниже чем 8,5 мас. % и повышение содержания никеля более чем 8,8 мас. % нецелесообразно, так как не приводит к положительному влиянию на механические свойства стали. Кроме того, содержание никеля более чем 8,8 мас. % может привести к расслоению.
Введение в состав стали меди в количестве 0,4-0,5 мас. % является оптимальным, так как способствует улучшению прокаливаемости и полируемости стали. Содержание меди менее чем 0,4 мас. % не приводит к повышению прокаливаемости, а при введении меди более чем 0,5 мас. % ухудшается ковкость стали.
Введение в состав стали алюминия в количестве 0,1-0,2 мас. % является оптимальным, так как приводит к увеличению упрочняющей фазы и повышению твердости стали. Снижение количества алюминия менее чем 0,1 мас. % не оказывает положительного эффекта на прочностные свойства стали. При содержании количества алюминия выше чем 0,2 мас. % происходит снижение пластических свойств и ухудшается ковкость стали.
Введение в состав стали азота в количестве 0,05-0,08 мас. % является оптимальным, так как увеличивает прокаливаемость, снижает чувствительность к перегреву, повышает стабильность карбидной фазы; сохраняется значительное преимущество в прочности и вязкости. Введение в состав стали азота в количестве менее 0,05 мас. % снижает прочность, а увеличение количеств азота более 0,08 мас. % приводит к снижению пластичности стали.
Изобретение поясняется таблицей, в которой приведены механические свойства предлагаемой инструментальной стали и известных сталей марок Р6М5 и Р6М3 (закалка на зерно балла 10), отпуск при 560°C, 3 раза.
Изобретение иллюстрируется следующим примером. Предлагаемая инструментальная сталь выплавлялась в открытой индукционной печи. Слитки массой от 12 кг ковались на прутки сечением 12×12 мм для лабораторных исследований. Степень деформации составила 85%. Температура начала ковки равна 1200°C, температура конца ковки - 900°C. Охлаждение после ковки выполнялось до 700°C на воздухе, далее - в песке. Сталь исследовали на механические свойства в холодном и горячем состоянии после закалки и отпуска. Закалка осуществлялась при температуре 1075-1100°C с последующим охлаждением в масле. Твердость после закалки составила HRC54-54. Отпуск осуществлялся нагревом до температуры 560°C три раза, твердость составила HRC 66. Теплостойкость предлагаемой стали составила 630°C.
Для сравнительной оценки использовалась сталь Р6М5 (прототип), твердость которой после закалки и трехразового отпуска при 560°C составила HRC63 (Геллер, Ю.А. Инструментальные стали / Ю.А. Геллер. - М.: Металлургия, 1975. - С. 377, табл. 83). Теплостойкость стали Р6М5 для твердости HRC58 составила 620°C (Позняк Л.А. Инструментальные стали: справочник / Л.А. Позняк, С.И. Тишаев, Ю.М. Скрынченко, Ю.Н. Кузьменко и др. - М.: Металлургия, 1977. - С. 128).
Для сравнительной оценки использовалась также сталь Р6М3, твердость которой после закалки и трехразового отпуска при 560°C составила HRC 62,5 (Геллер, Ю.А. Инструментальные стали / Ю.А. Геллер. - М.: Металлургия, 1975. - С. 377, табл. 83). Теплостойкость стали Р6М3 для твердости HRC58 составила 620°C (Позняк Л.А. Инструментальные стали: справочник / Л.А. Позняк, С.И. Тишаев, Ю.М. Скрынченко, Ю.Н. Кузьменко и др. - М.: Металлургия, 1977. - С. 129).
Проведенные испытания показали, что предлагаемая инструментальная сталь обладает оптимальными свойствами, обеспечивает лучшую теплостойкость и механические свойства, такие как твердость, износостойкость и ударная вязкость, по сравнению со сталью Р6М5 - прототипом.
Исследования показали увеличение в 0,9-1,3 раза стойкости инструмента, в частности пуансонов, резцов, сверл, выполненных из предлагаемой инструментальной стали, по сравнению со стойкостью инструмента, выполненного из стали Р6М5 - прототипа. Это позволяет использовать предлагаемую сталь для изготовления, например, матриц и пуансонов выдавливания, режущего инструмента, рабочая поверхность которых нагревается до 650°C.
Таким образом, использование предлагаемого изобретения повышает эксплуатационную стойкость инструмента вследствие увеличения твердости, прочности, ударной вязкости, теплостойкости и окалиностойкости инструментальной стали.
название | год | авторы | номер документа |
---|---|---|---|
Инструментальная сталь с интерметаллидным упрочнением | 2015 |
|
RU2620233C1 |
ШТАМПОВЫЙ СПЛАВ | 2014 |
|
RU2550071C1 |
Инструментальная сталь | 1990 |
|
SU1735428A1 |
ЛИТАЯ БЫСТРОРЕЖУЩАЯ СТАЛЬ | 1999 |
|
RU2175683C2 |
НОЖ ДЛЯ РЕЗКИ МЕТАЛЛА | 2008 |
|
RU2409695C2 |
ИНСТРУМЕНТАЛЬНАЯ ШТАМПОВАЯ СТАЛЬ | 2004 |
|
RU2274673C2 |
ИНСТРУМЕНТАЛЬНЫЙ СПЛАВ | 1995 |
|
RU2102519C1 |
Быстрорежущая сталь | 1991 |
|
SU1788074A1 |
ТЕПЛОСТОЙКАЯ СТАЛЬ | 2011 |
|
RU2441092C1 |
ВЫСОКОПРОЧНАЯ ТЕПЛОСТОЙКАЯ И РАДИАЦИОННОСТОЙКАЯ СТАЛЬ | 2021 |
|
RU2777681C1 |
Изобретение относится к области металлургии, а именно к инструментальным сталям, предназначенным для изготовления режущего и штампового инструмента, работающего при умеренных и высоких скоростях резания. Сталь содержит, в мас.%: углерод 0,30-0,35, кремний 1,3-1,4, марганец 1,30-1,45, хром 8,0-8,5, вольфрам 5,5-6,0, ванадий 0,7-0,8, молибден 2,0-2,5, кобальт 0,01-0,03, титан 0,01-0,02, никель 8,5-8,8, медь 0,4-0,5, алюминий 0,1-0,2, азот 0,05-0,08, железо - остальное. Повышаются прочность, ударная вязкость, твердость и теплостойкость инструментальной стали. 1 табл.
Инструментальная сталь, содержащая углерод, кремний, марганец, хром, вольфрам, ванадий, молибден и железо, отличающаяся тем, что она дополнительно содержит кобальт, титан, никель, медь, алюминий и азот при следующем соотношении компонентов мас.%:
СВЕТИЛЬНИК | 2017 |
|
RU2675320C2 |
ЛЕГИРОВАННЫЕ СТАЛИ И ИНСТРУМЕНТЫ ИЛИ ДЕТАЛИ, ИЗГОТОВЛЕННЫЕ ИЗ ЛЕГИРОВАННОЙ СТАЛИ | 2006 |
|
RU2420602C2 |
ЗАКАЛЕННАЯ МАРТЕНСИТНАЯ СТАЛЬ С НИЗКИМ ИЛИ НУЛЕВЫМ СОДЕРЖАНИЕМ КОБАЛЬТА, СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛИ ИЗ ЭТОЙ СТАЛИ И ПОЛУЧЕННАЯ ЭТИМ СПОСОБОМ ДЕТАЛЬ | 2008 |
|
RU2456367C2 |
СТАЛЬ, СПОСОБ ИЗГОТОВЛЕНИЯ СТАЛЬНОЙ ЗАГОТОВКИ И СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛИ ИЗ ЭТОЙ СТАЛИ | 2009 |
|
RU2496907C2 |
Походная разборная печь для варки пищи и печения хлеба | 1920 |
|
SU11A1 |
Походная разборная печь для варки пищи и печения хлеба | 1920 |
|
SU11A1 |
Авторы
Даты
2017-02-21—Публикация
2015-11-25—Подача