СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ СТАЛИ Российский патент 2006 года по МПК C23C8/22 C21D1/09 C21D6/04 

Описание патента на изобретение RU2274674C1

Изобретение относится к области формирования износостойких покрытий методами химико-термической обработки.

Известен способ лазерно-термической обработки стальных изделий, включающий обработку поверхности лазерным лучом при плотности мощности излечения 105÷106 Вт/см2 после предварительного нагрева изделия до 400÷600°С [1].

Недостатком данного способа является низкая твердость зоны термической обработки в диапазоне 280-350 кгс/мм2 (2,8÷3,5 ГПа) вследствие превращения переохлажденного аустентита в перлит с предварительным выделением феррита или цементита.

Наиболее близким по технической сущности и достигаемому результату является способ цементации, включающий нагрев, цементацию при температуре выше АC3, дискретное охлаждение, например, погружением в кипящий слой или обдувкой нейтральным газом, причем охлаждение в каждом цикле прекращают при достижении поверхностью температуры 600÷750°С и возобновляют после разогрева поверхности за счет аккумулированного тепла, а циклы повторяют до понижения температуры изделий после разогрева ниже Ar1, после чего проводят нагрев под закалку и закалку [2].

Недостатком данного способа является невысокая твердость упрочненного слоя в интервале от 600 до 700 кг/мм2 (6÷7 ГПа) вследствие присутствия остаточного аустенита в структуре слоя, состоящего из мелко и среднеигольчатого мартенсита.

Задачей данного изобретения является увеличение твердости изделий из стали при повышении износостойкости и сохранении высокой вязкости их сердцевины.

Техническим результатом данного изобретения является увеличение конструктивной прочности изделий в условиях одновременного воздействия сил трения, динамических и усталостных нагрузок.

Поставленная задача достигается тем, что в способе химико-термической обработки изделий из стали, включающем цементацию и закалку, отличием является то, что закалку осуществляют путем нагрева лазерными импульсами при плотности мощности излучения 2,4÷2,6 кВт/мм2 и скорости сканирования 1,75÷2,25 мм/с для достижения коэффициента перекрытия 0,3÷0,7 с последующим охлаждением в жидком азоте в течение 5÷10 с до температуры -196°С.

Нагрев поверхности лазерными импульсами проводят при плотности мощности излучения 2,4÷2,6 кВт/мм2 и скорости сканирования 1,75÷2,25 мм/с для достижения коэффициента перекрытия 0,3÷0,7. Данные режимы лазерной термической обработки обеспечивают фазовое превращение феррито-цементитной структуры цементованного слоя в мартенсито-цементитную со значительным содержанием аустенита остаточного, снижающего твердость слоя. Нагрев поверхности лазерными импульсами при меньшей плотности мощности излучения и большей скорости сканирования при коэффициенте перекрытия менее 0,3 приводит к недостатку энергии для локальной диффузии углерода, перераспределению химического состава и изменению структуры, обеспечивающих оптимальный профиль изменения твердости по глубине. Нагрев поверхности лазерными импульсами при большей плотности мощности излучения и меньшей скорости сканирования при коэффициенте перекрытия более 0,7 приводит к локальному или сплошному оплавлению цементованных слоев, образованию фазовых границ и понижению вязкости при циклических нагрузках.

Охлаждение поверхности осуществляют в жидком азоте в течение 5÷10 с до температуры -196°С. Данные продолжительность и температура обработки холодом обеспечивают превращение аустентита остаточного в мартенсит и повышение твердости цементованного слоя. Проведение обработки холодом в течение меньшего времени при большей температуре приводит к отсутствию охлаждения цементованного слоя по всей его длине и к неполноте фазового превращения аустенита остаточного в мартенсит, обусловливающей недополучение высокой твердости поверхности и износостойкости изделий. Проведение обработки холодом в течение большего времени при низкой температуре приводит к сквозному охлаждению по всему сечению, обусловливающему понижение вязкости сердцевины, и к превышению над оптимальным расходования жидкого азота.

Способ осуществляют следующим образом.

Изделия из стали подвергают цементации в газовой атмосфере при температуре выше Ас3 в насыщающей среде. Далее проводят закалку изделий путем нагрева лазерными импульсами при плотности мощности излучения 2,4÷2,6 кВт/мм2 и скорости сканирования 1,75÷2,25 мм/с для достижения коэффициента перекрытия 0,3÷0,7. Лазерная установка «Квант-16» работает в режиме свободной генерации лазерных импульсов на воздухе. Последующее охлаждение осуществляют в жидком азоте в течение 5÷10 с до температуры 196°С.

После химико-термической обработки изделий изготавливают металлографические шлифы, травление которых осуществляют в 4%-ном растворе азотной кислоты в этиловом спирте. Для оценки механических свойств упрочненных слоев применяют метод измерения микротвердости на приборе ПМТ-3 (нагрузка 100 г).

Пример 1.

Цилиндрические образцы из стали 12ХН3А диаметром 10 мм и высотой 50 мм подвергают цементации в газовой атмосфере с углеродным потенциалом 1,0 на глубину 0,8 мм в течение 10 часов при температуре 900°С.

Термическую обработку образцов из стали (закалку) осуществляют путем нагрева лазерными импульсами при плотности мощности излучения 2,5 кВт/мм2 и скорости сканирования 2 мм/с для достижения коэффициента перекрытия 0,5 с последующем охлаждением в жидком азоте в течение 7,5 с до достижения температуры -196°С.

Измерения микротвердости образцов из стали после химико-термической обработки позволяют определить твердость цементованного слоя, которая равна 810 кгс/мм2 (8,1 ГПа).

Пример 2.

Цементацию образцов из стали проводят так, как указано в примере 1, а термическую обработку (закалку) образцов из стали осуществляют путем нагрева лазерными импульсами при плотности мощности излучения 2,4 кВт/мм и скорости сканирования 2,25 мм/с для достижения коэффициента перекрытия 0,3 с последующим охлаждением в жидком азоте в течение 5 с до температуры -196°С.

Измерения микротвердости образцов из стали после химико-термической обработки позволяют определить твердость цементованного слоя, которая равна 770 кгс/мм2 (7,7 ГПа).

Пример 3.

Цементацию образцов из стали проводят так, как указано в примере 1, а термическую обработку (закалку) образцов из стали осуществляют путем нагрева лазерными импульсами при плотности мощности излучения 2,6 кВт/мм2 и скорости сканирования 1,75 мм/с для достижения коэффициента перекрытия 0,7 с последующим охлаждением в жидком азоте в течение 10 с до температуры -196°С.

Измерения микротвердости образцов из стали после химико-термической обработки позволяют определить твердость цементованного слоя, которая равна 750 кгс/мм2 (7,5 ГПа).

Результаты определения микротвердости цементованных слоев по предлагаемому способу и прототипу представлены в таблице.

ТаблицаСравнительные данные по микротвердости цементованных слоев по предлагаемому способу и прототипу

Осуществление технологического процессаПримерМикротвердость цементованных слоев, ГПаПо предлагаемому способу18,127,737,5По прототипу6,0÷7,0

Использование предлагаемого способа химико-термической обработки изделий из стали позволит увеличить микротвердость упрочняемых изделий по сравнению с прототипом с 6÷7 ГПа до 7,5÷8,1 ГПа при повышении износостойкости и сохранении высокой вязкости их сердцевины.

Предложенный способ используют для упрочнения рабочих органов оборудования пищевой промышленности, эксплуатируемых в условиях одновременного воздействия сил трения, динамических и усталостных нагрузок, таких как штифты, молотки и вальцы для переработки и измельчения сырья (какао бобы, зерно, черствый хлеб) в кондитерской, зерновой и хлебопекарной отраслях промышленности.

Источники информации

1. RU 2017833, C1, 10.07.90.

2. RU 2037556, С1, 07.09.89 - прототип.

Похожие патенты RU2274674C1

название год авторы номер документа
СПОСОБ ПОВЕРХНОСТНОГО УПРОЧНЕНИЯ ИЗДЕЛИЙ ИЗ СТАЛИ 2004
  • Чавчанидзе А.Ш.
  • Чувахин С.В.
  • Лавринович С.Б.
  • Тимофеева Н.Ю.
  • Лавринович Д.С.
RU2251594C1
Способ цементации стальных изделий 1987
  • Полухин Владимир Петрович
  • Крянина Марина Николаевна
  • Бернштейн Александр Маркович
  • Иванов Игорь Анатольевич
  • Объедков Юрий Михайлович
SU1611982A1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЛЯ ПОВЫШЕНИЯ ИЗНОСОСТОЙКОСТИ ИЗДЕЛИЙ ИЗ ГРАФИТИЗИРОВАННОГО ЧУГУНА 2015
  • Пустовойт Виктор Николаевич
  • Домбровский Юрий Маркович
  • Долгачев Юрий Вячиславович
RU2591906C1
Способ изготовления изделий 1988
  • Тарасов Анатолий Николаевич
  • Шаламов Михаил Иванович
  • Гончаренко Владимир Леонидович
  • Бещеков Владимир Глебович
SU1523287A1
СПОСОБ ЦЕМЕНТАЦИИ 1989
  • Костылева Л.В.
  • Пожарский А.В.
  • Ильинский В.А.
  • Рубцова Н.П.
RU2037556C1
Способ лазерной обработки стальных изделий 1990
  • Полянсков Юрий Вячеславович
  • Тамаров Алексей Павлович
SU1744147A1
СПОСОБ НИЗКОТЕМПЕРАТУРНОЙ ЦЕМЕНТАЦИИ (НТЦ) СТАЛИ 2018
  • Навоев Андрей Павлович
RU2709381C1
СПОСОБ УПРОЧНЕНИЯ РАЗДЕЛИТЕЛЬНОГО ШТАМПА 2014
  • Афанасьева Людмила Евгеньевна
  • Барабонова Инна Александровна
  • Барчуков Дмитрий Анатольевич
  • Зубков Николай Семёнович
  • Раткевич Герман Вячеславович
RU2566224C1
СПОСОБ РЕСУРСОСБЕРЕГАЮЩЕЙ СТУПЕНЧАТОЙ ЦЕМЕНТАЦИИ СТАЛИ 2020
  • Навоев Андрей Павлович
  • Фокин Борис Викторович
  • Жуков Анатолий Алексеевич
RU2728479C1
Способ упрочнения деревообрабатывающего инструмента, изготовленного из хромистых и хромо-кремнистых сталей 2022
  • Маринин Евгений Анатольевич
  • Тиханов Александр Владимирович
RU2792101C1

Реферат патента 2006 года СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ СТАЛИ

Изобретение относится к области химико-термической обработки и может быть использовано в пищевой промышленности при упрочнении рабочих органов пищевых машин и аппаратов кондитерского производства. Техническим результатом изобретения является увеличение твердости изделий из стали при повышении износостойкости и сохранении высокой вязкости их сердцевины. Способ осуществляют следующим образом: изделия подвергают цементации и осуществляют термическую обработку поверхности путем нагрева лазерными импульсами при плотности мощности излучения 2,4-2,6 кВт/мм2, скорости сканирования 1,75-2,25 мм/с и при достижении коэффициента перекрытия 0,3-0,7, а затем охлаждают в жидком азоте в течение 5-10 с до температуры -196°С. 1 табл.

Формула изобретения RU 2 274 674 C1

Способ химико-термической обработки стальных изделий, включающий цементацию и закалку, отличающийся тем, что закалку осуществляют путем нагрева лазерными импульсами при плотности мощности излучения 2,4-2,6 кВт/мм2, скорости сканирования 1,75-2,25 мм/с с коэффициентом перекрытия 0,3-0,7 и последующего охлаждения в жидком азоте в течение 5-10 с до температуры -196°С.

Документы, цитированные в отчете о поиске Патент 2006 года RU2274674C1

СПОСОБ ЦЕМЕНТАЦИИ 1989
  • Костылева Л.В.
  • Пожарский А.В.
  • Ильинский В.А.
  • Рубцова Н.П.
RU2037556C1
Способ цементации стальных изделий 1987
  • Полухин Владимир Петрович
  • Крянина Марина Николаевна
  • Бернштейн Александр Маркович
  • Иванов Игорь Анатольевич
  • Объедков Юрий Михайлович
SU1611982A1
СПОСОБ ЛАЗЕРНО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ УГЛЕРОДИСТЫХ СТАЛЕЙ 1996
  • Петриков В.Г.
  • Голованов А.Л.
  • Гаврилов Г.Н.
  • Костромин С.В.
RU2121004C1
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЭЛЕМЕНТОВ ПРЕСС-ФОРМ 1990
  • Першин В.П.
  • Меринов Б.С.
  • Карандашов К.К.
  • Евдокимов П.Е.
  • Марущенко В.В.
RU2016135C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ ЛЕГИРОВАННОЙ СТАЛИ 1995
  • Макарьев А.Н.
  • Исупов В.П.
  • Аноцкий С.В.
RU2087550C1

RU 2 274 674 C1

Авторы

Чавчанидзе Александр Шотович

Лавринович Сергей Борисович

Тимофеева Надежда Юрьевна

Нефедов Олег Александрович

Даты

2006-04-20Публикация

2005-06-01Подача