Изобретение относится к черной металлургии, в частности к способам термической обработки железнодорожных рельсов.
Известен способ закалки рельсов с прокатного нагрева путем дифференцированного охлаждения элементов профиля сжатым воздухом [1]. Существенными недостатками этого способа являются ограниченная возможность получения максимальных значений твердости (НВ388) на рельсах из стали с содержанием углерода 0,71-0,82%, недостаточная глубина закаленного слоя в головке рельса.
Известны также способы термической обработки рельсов, включающие нагрев под закалку и поверхностное охлаждение головки рельса струями воды и водовоздушной смесью [2, 3]. Недостатками данных способов являются неоднородность структуры по глубине закаленного слоя, образование недопустимых структур (верхний бейнит, мартенсит) в приповерхностном слое головки, недостаточная прямолинейность рельсов из-за неравномерного охлаждения всех элементов профиля рельса, необходимость в холодной правке.
Известен также способ термической обработки рельсов [3], прототип, при котором охлаждение головки производят непрерывно до 100-400°С при увеличении расхода охладителя от 1 до 50 объемов в секунду, после которого производят регулируемое охлаждение всех элементов профиля. Существенным недостатком данного способа является неоднородность микроструктуры с поверхности головки рельса, возможность образования в поверхностном слое головки недопустимых структур (верхний бейнит, мартенсит), невозможность получения максимальных значений твердости (НВ388) на расстоянии 22 мм от поверхности катания головки.
Желаемыми техническими результатами изобретения являются: повышение комплекса механических свойств, получение максимальной твердости (НВ388) на глубине до 22 мм от поверхности катания головки, а также увеличение эксплуатационной стойкости рельсов за счет получения достаточной глубины закаленного слоя с однородной сорбитной структурой.
Для этого рельс с прокатного нагрева подстуживают до температуры 820-870°С, затем производят охлаждение в двух средах: первоначально сжатым воздухом с поверхности головки в течение 20-30 сек при расходе воздуха 3000-4000 м3/ч, температуре воздуха 10-25°С и давлении 0,55 МПа; затем производят охлаждение головки водовоздушной смесью при расходе воды 25-30 л/мин, температуре воды 10-30°С и давлении 0,3-0,4 МПа, одновременно с охлаждением головки рельса производится охлаждение подошвы водо-воздушной смесью, при температуре воды 10-30°С, расходе 6-7 л/мин и давлении 0,08-0,09 МПа.
Охлаждение головки рельса в двух средах позволяет в первоначальный момент времени за счет подачи сжатого воздуха в течение 20-30 сек охладить поверхность головки до температуры 600-550°С, обеспечив образование сорбита с пластинчатой формой карбидной фазы, благодаря этому полностью исключается возможность образования в приповерхностных слоях головки недопустимых структур верхнего бейнита и мартенсита. Причем увеличение времени охлаждения сжатым воздухом (более 30 сек) приводит к резкому снижению твердости на поверхности катания, а при уменьшении времени охлаждения (менее 20 сек) возрастает вероятность образования мартенсита и бейнита. Последующее применение водовоздушной смеси с постоянным расходом воды способствует увеличению глубины и твердости закаленного слоя головки до требуемых пределов. Охлаждение подошвы рельса водовоздушной смесью производится для обеспечения его прямолинейности. При этом содержание воды в смеси, подаваемой на подошву, должно быть в четыре раза меньше, чем на головку.
Заявляемые пределы подобраны экспериментальным путем исходя из требований к микроструктуре, прямолинейности, механическим свойствам и твердости углеродистой стали.
Способ был реализован в полупромышленных условиях на полнопрофильных пробах длиной 1500 мм, отобранных от рельса типа Р65, изготовленного из стали марки НЭ76Ф. Нагретые до температуры 820-870°С, пробы закаливали в охлаждающем устройстве, представляющем собой две секции, состоящие из восьми ресиверов, два из которых расположены над поверхностью катания, четыре - со стороны боковых поверхностей головки, два - под подошвой рельсовой пробы. Ресиверы имеют решетки, образованные рядами отверстий диаметром 1,5 мм и расположенные на фиксированном расстоянии (50 мм) от поверхности рельса. После термообработки исследовали микроструктуру закаленного металла, а также определяли механические свойства и твердость.
Технологические параметры термообработки рельсовых проб приведены в таблице 1. Результаты механических испытаний и исследований микроструктуры в таблице 2.
Предлагаемый способ термической обработки позволил повысить комплекс механических свойств, твердость стали, а также увеличить эксплуатационную стойкость рельсов за счет получения однородной сорбитной структуры и увеличения глубины закаленного слоя.
Источники информации
1. В.В.Поляков, А.В.Великанов. Основы технологии производства железнодорожных рельсов - М.: Металлургия, 1990. 416 с.
2. А.С. СССР № 518970, кл C 21 D 9/04.
3. А.С. СССР № 350843, кл C 21 D 9/04.
4. А.С. СССР № 522751, кл C 21 D 9/04.
Технологические параметры термообработки рельсовой пробы на охлаждающей установке, состоящей из двух секций (длина 1500 мм)
Результаты физико-механических испытаний и исследований микроструктуры
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ РЕЛЬСОВ | 2005 |
|
RU2283353C1 |
СПОСОБ И УСТРОЙСТВО ТЕРМИЧЕСКОЙ ОБРАБОТКИ РЕЛЬСОВ | 2010 |
|
RU2456352C1 |
Способ термической обработки рельсов | 1977 |
|
SU837070A1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ РЕЛЬСОВ | 2005 |
|
RU2294387C1 |
СПОСОБ ДИФФЕРЕНЦИРОВАННОЙ ТЕРМООБРАБОТКИ ПРОФИЛИРОВАННОГО ПРОКАТА, В ЧАСТНОСТИ РЕЛЬСА, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2369646C1 |
Способ изготовления остряков стрелочных переводов с использованием промежуточной детали | 2016 |
|
RU2646006C1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СВАРНЫХ СТЫКОВ РЕЛЬСОВ | 2008 |
|
RU2371535C1 |
Способ термической обработкиРЕльСОВ | 1979 |
|
SU804702A2 |
Способ термической обработки сварных соединений рельсов и устройство для осуществления способа | 2018 |
|
RU2705820C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЖЕЛЕЗНОДОРОЖНЫХ РЕЛЬСОВ ПОВЫШЕННОЙ ИЗНОСОСТОЙКОСТИ И КОНТАКТНОЙ ВЫНОСЛИВОСТИ | 2018 |
|
RU2743534C1 |
Изобретение относится к области черной металлургии, в частности к способам термической обработки железнодорожных рельсов. Техническим результатом изобретения является повышение комплекса механических свойств, получение максимальной твердости (НВ388) на глубине до 22 мм от поверхности катания головки, а также увеличение эксплуатационной стойкости рельсов за счет получения достаточной глубины закаленного слоя с однородной сорбитной структурой. Для достижения технического результата рельс с прокатного нагрева подстуживают до температуры 820-870°С и охлаждают в двух средах: первоначально сжатым воздухом с поверхности головки в течение 20-30 сек при расходе воздуха 3000-4000 м3/ч, температуре воздуха 10-25°С и давлении 0,55 МПа; затем производят охлаждение головки водо-воздушной смесью при расходе воды 25-30 л/мин, температуре воды 10-30°С и давлении 0,3-0,4 МПа, одновременно с охлаждением головки рельса производится охлаждение подошвы водо-воздушной смесью при температуре воды 10-30°С, расходе 6-7 л/мин и давлении 0,08-0,09 МПа. 2 табл.
Способ термической обработки рельсов, включающий непрерывное охлаждение головки с последующим регулируемым охлаждением элементов профиля рельса, отличающийся тем, что рельс с прокатного нагрева подстуживают до температуры 820-870°С и охлаждают в двух средах: первоначально сжатым воздухом с поверхности головки в течение 20-30 с при расходе воздуха 3000-4000 м3/ч, при температуре воздуха 10-25°С и давлении 0,55 МПа, затем производят охлаждение головки водовоздушной смесью при расходе воды 25-30 л/мин, температуре воды 10-30°С и давлении 0,3-0,4 МПа, одновременно с охлаждением головки рельса производится охлаждение подошвы водовоздушной смесью при температуре воды 10-30°С, расходе 6-7 л/мин и давлении 0,08-0,09 МПа.
Способ термической обработки рельсов | 1975 |
|
SU522751A1 |
СПОСОБ УПРОЧНЕНИЯ ЖЕЛЕЗНОДОРОЖНЫХ РЕЛЬСОВ | 0 |
|
SU219525A1 |
Способ производства рельсов | 1985 |
|
SU1300946A1 |
Способ термической обработки рельсов | 1984 |
|
SU1239170A1 |
СПОСОБ ХИМИЧЕСКОГО ПОЛИРОВАНИЯ АЛЮМИНИЯ | 1995 |
|
RU2101386C1 |
Авторы
Даты
2006-07-27—Публикация
2005-01-11—Подача