СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО КАРБАМИДА Российский патент 2006 года по МПК C05C9/00 B01J2/28 

Описание патента на изобретение RU2285684C1

Изобретение относится к технологии получения гранулированного карбамида и может использоваться на предприятиях азотной промышленности, производящих карбамид в качестве удобрений.

Известен способ получения гранулированного карбамида из плава в присутствии модификаторов-цеолитов: клиноптилолита или морденита в виде мелкодисперсной фракции с гранулометрическим составом до 100 мкм в количестве 0,25-0,50% от массы плава (см. патент РФ №2030371, МПК С 05 С1/02, С 07 С 273/16, 1992.08.25).

Недостатком известного способа является низкая агрохимическая эффективность упрочняющей гранулы карбамида добавки, поскольку клиноптилолит и морденит состоят из неусваиваемых растениями алюмосиликатов.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ получения гранул карбамида, включающий плавление кристаллического карбамида, внесение в расплав карбамида тонкодисперсного неорганического материала и гранулирование. Добавка тонкодисперсного неорганического материала обеспечивает высокую прочность гранул карбамида, которые могут использоваться для непосредственного внесения в почву, или как компонент для смеси удобрений (см. патент США №5782951, 21.07.1998). Данный способ принят за прототип.

Недостатком известного способа, принятого за прототип, является низкая агрохимическая эффективность упрочняющей гранулы карбамида добавки, обусловленная тем, что тонкодисперсный неорганический материал отобран из ряда: окись кальция, гидроксид кальция, цемент и пыль, плохоусваиваемого растениями.

Признаки прототипа, совпадающие с признаками заявляемого решения - плавление кристаллического карбамида, внесение в расплав карбамида модификатора и гранулирование.

Задача изобретения - повышение агрохимической эффективности упрочняющей гранулы карбамида добавки.

Поставленная задача была решена за счет того, что в известном способе получения гранулированного карбамида, включающем плавление кристаллического карбамида, внесение в расплав карбамида модификатора и гранулирование, в качестве модификатора используют осадок магнийаммонийфосфата, полученный при очистке сточных вод от ионов аммония или фосфат-ионов, который вносят в расплав карбамида в виде водной суспензии с содержанием воды, в т.ч. кристаллизационной, не более 14 кг на 1 т расплава карбамида или в сухом тонкодисперсном виде в количестве 5-10 кг на 1 т расплава карбамида.

Признаки предлагаемого способа, отличительные от прототипа, - использование в качестве модификатора осадка магнийаммонийфосфата, полученного при очистке сточных вод от ионов аммония или от фосфат-ионов; введение в расплав карбамида модификатора в виде водной суспензии с содержанием воды, в т.ч. кристаллизационной, не более 14 кг на 1 т расплава карбамида или в сухом тонкодисперсном виде в количестве 5-10 кг на 1 т расплава карбамида.

Осадок магнийаммонийфосфата содержит (вес.%): MgO - 4,9-29,4; Р2O5 - 8,7-51,7; NH3 - 2,1-12,4; Н2О - остальное.

Способ получения гранулированного карбамида осуществляют согласно описанию в примере 1.

Пример 1. Для получения гранул из расплава использовали карбамид ОАО «Минеральные удобрения». Навеску карбамида 60 грамм помещали в керамический реактор с глицериновой рубашкой. Реактор нагревали до температуры 138-140°С. Затем в расплавленный карбамид добавляли приготовленную навеску сухого измельченного гексагидрата магнийаммонийфосфата MgNH4PO4·6H2O (с точностью 0,001 г) в количестве 0,3 г (5 кг на 1 т карбамида). Смесь карбамида с добавкой перемешивали в течение 10 минут при температуре 138-140°С. Температуру расплава определяли с помощью термометра, опущенного в реактор.

Полученный расплав подавали через пипетку в капельном режиме в термостатируемый сосуд с определенным количеством минерального масла марки ТП-22С (температура вспышки 186°С, температура застывания -15°С, плотность 900 кг/м3), в котором происходило быстрое охлаждение гранул карбамида. Высота слоя масла в сосуде составляла 0,15 м. После этого гранулы тщательно освобождали от масла с помощью фильтровальной бумаги и просеивали через набор сит. Для испытаний отбирали шаровидные гранулы фракции 3,4-5 мм карбамида.

Статическую прочность гранул измеряли на приборе измерения прочности гранул ИПГ-1 по стандартной методике. Испытаниям на раздавливание при измерении среднего усилия разрушения подвергали 28-32 гранул определенной партии, полученных при одинаковых условиях. Статистическую обработку данных по прочности гранул карбамида проводили на ЭВМ с использованием программного пакета «Microsoft Excel». Влагопоглощение гранул карбамида определяли по изменению массы гранул с навеской 1 г, выдержанных в течение 24 часов в эксикаторе при влажности 100%.

Средняя статическая прочность гранул составила 1,115 кгс/гран. Влагопоглощение гранул составило 0,098%.

Пример 2.

Способ осуществляют аналогично примеру 1 с тем отличием, что навеску сухого гексагидрата магнийаммонийфосфата MgNH4PO4·6H2O добавляли в расплав карбамида в количестве 0,6 г (10 кг на 1т карбамида). Средняя статическая прочность гранул составила 1,155 кгс/гран. Влагопоглощение гранул составило 0,095%.

Пример 3.

Способ осуществляют аналогично примеру 1 с тем отличием, что в расплав карбамида добавляли навеску сухого моногидрата магнийаммонийфосфата MgNH4PO4·H2O в количестве 0,3 г. (5 кг на 1т карбамида). Средняя статическая прочность гранул составила 1,660 кгс/гран. Влагопоглощение гранул составило 0,092%.

Пример 4.

Способ осуществляют аналогично примеру 1 с тем отличием, что навеску сухого моногидрата магнийаммонийфосфата MgNH4PO4·H2O добавляли в расплав карбамида в количестве 0,6 г (10 кг на 1 т карбамида). Средняя статическая прочность гранул составила 1,564 кгс/гран. Влагопоглощение гранул составило 0,099%.

Пример 5.

Способ осуществляют аналогично примеру 1 с тем отличием, что навеску гексагидрата магнийаммонийфосфата MgNH4PO4·6H2O в количестве 0,3 г (5 кг на 1 т карбамида) добавляли в расплав карбамида в виде пасты с влажностью 70%. Средняя статическая прочность гранул составила 1,031 кгс/гран. Влагопоглощение гранул составило 0,102%.

Пример 6.

Способ осуществляют аналогично примеру 1 с тем отличием, что в расплав карбамида не добавлялось никаких модификаторов. Средняя статическая прочность гранул составила 0,943 кгс/гран. Влагопоглощение гранул составило 0,103%.

Пример 7.

Способ осуществляют аналогично примеру 1 с тем отличием, что в расплав карбамида в качестве модификатора добавляли тонкодисперсный оксид кальция (фракция -0.100 мм) в количестве 0,6 г (10 кг на 1 т карбамида). Средняя статическая прочность гранул карбамида составила 1,339 кгс/гран. Влагопоглощение гранул составило 0,100%.

Пример 8.

Способ осуществляют аналогично примеру 1 с тем отличием, что навеску гексагидрата магнийаммонийфосфата MgNH4PO4·6H2O в количестве 0,6 г (10 кг на 1 т карбамида) добавляли в расплав карбамида в виде пасты с влажностью 70%. Средняя статическая прочность гранул составила 0,665 кгс/гран. Влагопоглощение гранул составило 0,082%.

Результаты экспериментов представлены в таблице.

ТаблицаВид модификатораКоличество модификатора, кг/тКоличество воды в модификаторе, кг/т карбамидаСредняя статическая прочность гранул Рс, кгс/гранВлагопоглощение, %1MgNH4PO4·6H2O5,02,21,1150,0982MgNH4PO4·6H2O104,41,1550,0953MgNH4PO4·H2O5,00,581,6600,0924MgNH4PO4·H2O101,161,5640,0995Паста
MgNH4PO4·6H2O
5,013,871,0310,102
6Без модификатора000,9430,1037Тонкодисперсный оксид кальция1001,3390,1008Паста
MgNH4PO4·6H2O
1027,730,6650,082

Как видно из таблицы, заявляемый способ получения гранулированного карбамида по сравнению с прототипом позволяет увеличить прочность гранул карбамида с 1,339 до 1,660 кгс/гран., т.е. на 24% при использовании отхода технологии очистки сточных вод, содержащих аммоний или фосфат-ионы, одновременно улучшая агрохимическую эффективность гранулированного карбамида. Повышение содержания воды, в т.ч. кристаллизационной, выше 14 кг на 1 т расплава карбамида ведет к снижению прочности гранул карбамида.

Похожие патенты RU2285684C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ОБОГАЩЕННОГО КАРНАЛЛИТА 2006
  • Пойлов Владимир Зотович
  • Романов Николай Юрьевич
RU2308417C1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ХЛОРИСТОГО КАЛИЯ 2021
  • Пойлов Владимир Зотович
  • Потапов Игорь Сергеевич
RU2769801C1
Способ получения сложного удобрения 1985
  • Пархоменко Владимир Дмитриевич
  • Стеба Владимир Константинович
  • Смирнова Елена Степановна
  • Пивоваров Александр Андреевич
  • Вовкотруб Николай Филиппович
SU1283240A1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО КАРБАМИДА И ГРАНУЛЯЦИОННАЯ БАШНЯ 2004
  • Перминов Юрий Иванович
  • Фокеев Александр Павлович
  • Гусев Иван Владимирович
  • Чеблаков Николай Валентинович
  • Скудин Алексей Георгиевич
  • Солдатов Алексей Владимирович
  • Печникова Галина Николаевна
  • Прокопьев Александр Алексеевич
  • Костин Олег Николаевич
  • Кузнецов Николай Михайлович
  • Есин Игорь Вениаминович
RU2281270C1
Способ получения гранулированного медленнодействующего азотного удобрения 1985
  • Пархоменко Владимир Дмитриевич
  • Стеба Владимир Константинович
  • Смирнова Елена Степановна
  • Пивоваров Александр Андреевич
SU1346634A1
СЛОЖНОЕ ГРАНУЛИРОВАННОЕ УДОБРЕНИЕ ПРОЛОНГИРОВАННОГО ДЕЙСТВИЯ С МИКРОЭЛЕМЕНТАМИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2000
  • Гаврилин Г.Ф.
  • Андреев Г.Д.
  • Могилевская Е.М.
  • Новиков А.П.
  • Донских Н.А.
  • Шелудько В.В.
  • Вергунов В.Н.
RU2193546C2
Способ получения гранулированного карбамида 1986
  • Стрельцов Олег Анатольевич
  • Олевский Виктор Маркович
  • Вахрушев Юрий Апполинарьевич
  • Воловиков Александр Николаевич
  • Шуклин Александр Васильевич
  • Федун Ольга Сергеевна
  • Иванов Марк Ефремович
  • Ступак Павел Николаевич
  • Смирнова Лилия Владимировна
SU1452806A1
Способ получения покрытия для гранулированных водорастворимых удобрений 1980
  • Позин Макс Ефимович
  • Зинюк Ренат Юрьевич
  • Правдин Николай Николаевич
  • Беляева Нина Серафимовна
  • Иванова Нина Алексеевна
SU941336A1
СОСТАВ УДОБРЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ УДОБРЕНИЯ 2003
  • Сергеев Ю.А.
  • Бойцов Е.Н.
  • Солдатов А.В.
  • Фокеев А.П.
  • Гусев И.В.
  • Чеблаков Н.В.
  • Прокопьев А.А.
  • Кузнецов Н.М.
  • Перепечко В.Ф.
  • Новоселов А.М.
  • Никипелов П.И.
RU2225854C1
Способ получения модифицированного азотного удобрения 1989
  • Калашников Сергей Григорьевич
  • Стеба Владимир Константинович
  • Кулик Александр Павлович
  • Коваленко Виктор Степанович
  • Пархоменко Владимир Дмитриевич
  • Водопьянов Виталий Григорьевич
  • Дергунов Юрий Иванович
  • Полякова Зоя Александровна
  • Горелик Лев Александрович
SU1661180A1

Реферат патента 2006 года СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО КАРБАМИДА

Изобретение относится к технологии получения гранулированного карбамида и может использоваться на предприятиях азотной промышленности, производящих карбамид в качестве удобрений. Способ получения гранулированного карбамида включает плавление кристаллического карбамида, внесение в расплав карбамида модификатора и гранулирование. В качестве модификатора используют осадок магнийаммонийфосфата, полученный при очистке сточных вод от ионов аммония или от фосфат-ионов, который вносят в расплав карбамида в виде водной суспензии тонкодисперсного магнийаммонийфосфата с содержанием воды, в т.ч. кристаллизационной, не более 14 кг на 1 т расплава карбамида или в виде сухого тонкодисперсного магнийаммонийфосфата в количестве 5-10 кг на 1 т расплава карбамида. Техническим результатом изобретения является повышение прочности гранул карбамида при одновременном улучшении агрохимической эффективности удобрения. 1 табл.

Формула изобретения RU 2 285 684 C1

Способ получения гранулированного карбамида, включающий плавление кристаллического карбамида, внесение в расплав карбамида модификатора и гранулирование, отличающийся тем, что в качестве модификатора используют осадок магнийаммонийфосфата, полученный при очистке сточных вод от ионов аммония или фосфат-ионов, который вносят в расплав карбамида в виде водной суспензии с содержанием воды, в т.ч. кристаллизационной, не более 14 кг на 1 т расплава карбамида или в сухом тонкодисперсном виде в количестве 5-10 кг на 1 т расплава карбамида.

Документы, цитированные в отчете о поиске Патент 2006 года RU2285684C1

US 5782951 A, 21.07.1998
Способ получения гранулированной мочевины с защитным покрытием 1980
  • Печковский Владимир Васильевич
  • Плышевский Сергей Васильевич
  • Кулешова Светлана Ивановна
  • Широков Станислав Георгиевич
  • Грудзинский Леонид Григорьевич
SU975700A1
Способ получения гранулированного карбамида 1984
  • Мееровская Вера Израильевна
  • Матросова Вера Аркадьевна
  • Теплицкий Яков Семенович
  • Горячев Геннадий Григорьевич
  • Атабаев Жанабай
  • Гриценко Федор Михайлович
  • Чернова Антонина Игоревна
SU1289865A1
US 6709685 B1, 23.03.2004.

RU 2 285 684 C1

Авторы

Пойлов Владимир Зотович

Лобанов Сергей Александрович

Даты

2006-10-20Публикация

2005-06-09Подача