МАГНЕЗИАЛЬНАЯ МАССА ДЛЯ ФУТЕРОВКИ МЕТАЛЛУРГИЧЕСКИХ АГРЕГАТОВ Российский патент 2007 года по МПК C04B35/66 C04B35/04 C04B35/43 

Описание патента на изобретение RU2292321C1

Изобретение относится к огнеупорной промышленности и может быть использовано для изготовления и ремонта футеровки высокотемпературных агрегатов черной и цветной металлургии с температурой службы до 1650°С, в частности для рабочей футеровки сталеразливочных ковшей, наружной футеровки патрубка вакууматора.

Масса для футеровки высокотемпературных металлургических агрегатов должна обладать стойкостью к расплавам металла и шлака при температурах до 1650°С и низкой теплопроводностью во избежание охлаждения этих расплавов. Кроме того, масса должна обладать адгезией, достаточной для ее сцепления с поверхностью арматурной футеровки, как в процессе ее нанесения, так и в процессе сушки, а также в течение всего срока службы и при этом легко отделяться по окончанию службы при охлаждении.

Известна магнезиальная масса для футеровки металлургических агрегатов, содержащая периклазосодержащий заполнитель (фракции 1-0,063 мм) - 57-75%, (фракции <0,063 мм) - 17-31%, полифосфат натрия - 0,2-0,8%, метасиликат натрия и/или сульфат магния - 1,7-4,8%, бентонит (фракции 0,5-0 мм) - 1,7-3,5, двуокись кремния (фракции <0,01 мм) - 1,5-3,4%, неорганическое волокно - 0,5-1,3% (патент RU №2159219, С 04 В 35/043, 2000 г.).

Недостатком этой массы является недостаточная стойкость к расплавам металла и шлака (металло- и шлакоустойчивость), высокая теплопроводность, а также приваривание массы к арматурной футеровке по окончанию срока службы.

Наиболее близкой по вещественному составу является огнеупорная торкрет-масса, содержащая не менее одного заполнителя магнезиального состава фракции менее 10 мм, в которой содержится более 5% фракции менее 0,074 мм; не менее одного неорганического волокнистого материала в количестве не более 5% и/или не менее одного органического волокнистого материала в количестве не более 5%; не менее двух неорганических связующих компонентов, составляющих суммарно от 1 до 10%; не менее одного углеродсодержащего материала в количестве не более 10%, а также от 5 до 25% воды. Причем в качестве неорганического связующего могут использоваться бентонит и глина. Российские стандарты относят бентонит к керамическим пластификаторам, глину - к огнеупорным пластификаторам (патент ЕР 0123755, С 04 В 35/043, 35/66, 1984 г.).

Недостатком этой массы является недостаточная стойкость футеровки к расплавам металла и шлака, обусловленная повышенным выгоранием углеродсодержащего материала в процессе предварительной термообработки на 1100°С. Так, при разогреве футеровки свыше 600°С происходит интенсивное окисление и выгорание углеродсодержащего материала, приводящее к образованию пористой структуры, что в дальнейшем в процессе службы проводит к проникновению расплава металла и шлака вглубь футеровочного слоя с последующим его размыванием. Кроме того, предложенная масса обладает недостаточной адгезией в процессе ее нанесения, а при использовании бентонита происходит приваривание массы к арматурной футеровке по окончанию службы.

Задачей, на решение которой направлено изобретение, является создание массы для футеровки металлургических агрегатов, обладающей повышенной стойкостью к расплавам металла и шлака, пониженной теплопроводностью, хорошей адгезией к арматурной футеровке как при нанесении, так и при разогреве и в службе. Дополнительно решалась задача по ускорению процесса разогрева футеровки без образования трещин (сушки до 150°С и термообработки до 1100°С).

Поставленная задача решается за счет того, что магнезиальная масса для изготовления футеровки металлургических агрегатов, включающая магнезиальный заполнитель, неорганическое связующее, огнеупорный пластификатор, волокнистый материал, представленный органическим и неорганическим волокном, углеродсодержащий материал дополнительно содержит антиоксидант в виде смеси с углеродсодержащим материалом и огнеупорным пластификатором, взятых в соотношении (1-2):(2-4):(1-5) соответственно, а соотношение органического и неорганического волокна в волокнистом материале составляет 1:(1,5-2,5) при следующем соотношении компонентов массы, мас.%:

Магнезиальный заполнительфракции менее 2 ммосноваНеорганическое связующее3-10Волокнистый материал1-5Смесь антиоксиданта, углеродсодержащегоматериала и огнеупорного пластификатора4-20.

Использование волокнистого материала в виде органического и неорганического волокна, взятых в указанном соотношении и количестве, обеспечивает качественное армирование слоя массы в процессе ее нанесения, сушки и термообработки, а также наиболее эффективно способствует формированию мелкопористой структуры за счет постепенного выгорания органического волокна в широком интервале температур (100-1000°С), а следовательно, уменьшению теплопроводности огнеупора без снижения метало- и шлако-устойчивости. Кроме того, образование мелкопористой структуры облегчает удаление паров воды и позволяет проводить быструю термообработку футеровки без образования трещин.

Использование в массе совокупности компонентов, включающей антиоксидант, огнеупорный пластификатор и углеродсодержащий материал:

- снижает теплопроводность футеровки и ускоряет процесс ее сушки вследствие формирования мелкопористой структуры, которая образуется при разогреве футеровки до 1100°С в результате частичного выгорания углеродсодержащего материала и увеличения в объеме частиц антиоксиданта;

- повышает стойкость футеровки к воздействию металлошлакового расплава за счет частичного сохранения углеродсодержащего материала от окисления и выгорания в процессе термообработки футеровки до 1100°С.

Защита от окисления и выгорания обусловлена наличием антиоксиданта, предотвращающего выгорание углеродсодержащего материала, и огнеупорного пластификатора, образующего малопроницаемый к проникновению кислорода воздуха, керамический слой, снижающий окисление углеродсодержащего материала. А частичную защиту от окисления и выгорания обеспечивает заявленное суммарное количество этих компонентов, взятых в соотношении (1-2):(2-4):(1-5).

Таким образом, заявленная масса для футеровки металлургических агрегатов обладает необходимым набором свойств, обеспечивающим стабильную эксплуатацию металлургических агрегатов при температурах до 1650°С.

Из научно-технической литературы неизвестно использование волокнистого материала в виде органического и неорганического волокна, а также антиоксиданта в смеси с огнеупорным пластификатором и углеродсодержащим материалом, в сочетании с магнезиальным заполнителем и неорганическим связующим, взятых в заявленных соотношениях и количестве.

Для изготовления образцов использовали следующие материалы:

- магнезиальный заполнитель: периклаз спеченный фракции 2-0 мм, 10-0 мм (в т.ч. фр. <0,074 мм - 90%), 1-0 мм (1-0,063 мм, <0,063 мм) с содержанием MgO - 92,5%, лом магнезиальных изделий фракции 2-0 мм: периклазохромитовых с содержанием MgO - 61,5%, периклазошпинельных с содержанием MgO - 65,4%; доломит спеченный с содержанием MgO - 51,6%;

- неорганическое связующее: натрий фосфорнокислый, сульфат магния, метасиликат натрия, борная кислота, диоксид кремния.

- органическое волокно длиной 3-8 мм: полипропиленовое волокно, полиэфирное волокно, отходы хлопка;

- неорганическое волокно длиной 10-12 мм: каолиновое волокно, асбест, каменная вата (базальтовое волокно);

- антиоксидант: алюминиевый порошок вторичный пассивированный АПВ-П фракции менее 0,2 мм, кремний кристаллический марки КР-1 фракции менее 0,088 мм, карбид кремния фракции менее 0,1 мм;

- огнеупорный пластификатор фракции менее 0,5 мм: глина Латненского месторождения с содержанием Al2O3 - 34,1%, каолин с содержанием Al2O3 - 38,1%;

- бентонит фракции менее 0,5 с содержанием Al2O3 - 13,8%;

- углеродсодержащий материал: графит марки ГТ-1 фракции менее 0,5 мм, нефтяной кокс фракции менее 0,063 мм, коксовое масло.

Все материалы промышленного производства.

Для изготовления образцов исходные компоненты перемешивали в планетарном смесителе, а затем увлажняли водой в количестве 10-20% сверх 100%. Образцы формовали на гидравлическом прессе при давлении 10 МПа. Далее образцы сушили при 150°С, затем термообрабатывали при 1100°С, 1600°С. Теплопроводность определяли по ГОСТ 12170-85 при 1200°С. Окисляемость оценивали по потере массы после нагревания до 1300°С со скоростью 300°С в час и в выдержкой 2 часа в окислительной атмосфере. Для определения окисляемости использовали предварительно термообработанные при 450°С образцы из массы №4 и массы-прототипа с равным содержанием углеродсодержащего материала (5% коксового масла). Для остальных составов определение окисляемости не проводилось в виду того, что сравнение значений окисляемости корректно только при равных количествах углеродсодержащих материалов. Адгезию определяли визуально при нанесении массы на поверхность шамотного кирпича, установленного вертикально, и при последующих термообработках при 150°С, 1100°С, 1600°С. Стойкость массы к металло-шлаковому расплаву оценивали по шлакоустойчивости тигельным методом. Для этого в тигли из масс, обожженные на 1600°С, помещали таблетки со шлаком и нагревали до 1550°С с выдержкой 3 часа. После этого тигли разрезали пополам и замеряли площадь разъедания шлаком. Составы и свойства заявляемых масс, а также масс аналога и прототипа представлены в таблицах 1 и 2.

Из полученных данных видно, что заявляемая масса для футеровки металлургических агрегатов обладает более высокой шлакоустойчивостью и более низкой теплопроводностью по сравнению с массами аналога и прототипа. Кроме того, она обладает более низкой окисляемостью по сравнению с массой прототипом. Также необходимо отметить, масса обладала хорошей адгезией при нанесении и не осыпалась по сравнению с массой-прототипом, а после обжига на 1600°С масса легко удалялась при механическом воздействии в отличие от массы аналога, где наблюдалось приваривание к поверхности кирпича.

Таким образом, использование заявляемой магнезиальной массы позволит повысить стойкость футеровки в службе, обеспечить хорошую адгезию и при этом исключить ее приваривание к арматурной футеровке, снизить время ее сушки и термообработки на 30%, предотвратить охлаждение металлургических расплавов за счет снижения теплопроводности.

Таблица 1Компоненты шихтыСоставы масс, мас.%аналогпрототип1234Магнезиальный заполнитель, фракции 2-0 мм, %887178,577Периклаз спеченный604077Лом магнезиальных изделийПериклазохромитовые2850,5Периклазошпинельные3118Доломит спеченный10Периклаз спеченный фракции 1-0 мм90,5Периклаз спеченный фракции 10-0 мм (в т.ч. фр. <0,074 мм - 90%)79Нерганическое связующее, %386105,510Фосфорнокислый натрий1320,52Сульфат магния3566Метасиликат натрия222,52Борная кислота21Диоксид кремния2,5Волокнистый материал, %513,5516Органическое волокно:Полипропиленовое волокно110,5Полиэфирное волокно0,371Отходы хлопка10,53Неорганическое волокно: Каолиновое волокно3121Асбест0,631Базальтовое волокно0,513Соотношение волокна органическое: неорганическое1:1,51:1,71:2,51:1,5-1:1Смесь, %420128Антиоксидант, %Алюминий10,5Кремний кристаллический20,50,5Карбид кремния1Огнеупорный пластификатор, фракции 0,5-0 мм, % Глина22Каолин82,52Бентонит3Углеродсодержащий материал, %Графит13Нефтяной кокс103Коксовое масло55Соотношение антиоксидант: огнеупорный пластификатор: углеродсодержащий материал1:2:12:4:51,5:3:41:2:5

Таблица 2Свойства образцовНомера масс1234аналогпрототипПлощадь разъедания, %9,88,09,410,316,513,4Коэффициент теплопроводности при 1200°С, Вт/м·К1,071,131,041,101,221,08Окисляемость при 1300°С, %---2-3,8Адгезияпроисходит частичное осыпание массыпри нанесенииосыпание и отслаивание массы не происходитПри сушке до 150°С и термообработке до 1100°Сосыпание и отслаивание массы не происходитВ службе после 1600°Сосыпание и отслаивание не происходит, масса легко удаляется при механическом воздействиимасса приваривается и трудно удаляется при механическом воздействииосыпание и отслаивание не происходит, масса легко удаляется при механическом воздействии

Похожие патенты RU2292321C1

название год авторы номер документа
ОГНЕУПОРНАЯ ТОРКРЕТ-МАССА 2010
  • Коростелёв Сергей Павлович
  • Дунаев Владимир Валериевич
  • Сырескин Сергей Николаевич
  • Реан Ашот Александрович
  • Одегов Сергей Юрьевич
  • Аксельрод Лев Моисеевич
  • Таратухин Григорий Владимирович
  • Ненашев Евгений Николаевич
  • Поспелова Елена Ивановна
  • Илянкин Алексей Викторович
RU2424213C1
ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ НЕЙТРАЛИЗАТОРА ШЛАКА 2005
  • Ильин Геннадий Иванович
RU2281266C1
Способ получения периклазоуглеродистого бетона и периклазоуглеродистый бетон 2023
  • Земляной Кирилл Геннадьевич
  • Хафизова Алина Руслановна
  • Кащеев Иван Дмитриевич
RU2818338C1
ШПИНЕЛЬНОПЕРИКЛАЗОУГЛЕРОДИСТЫЙ ОГНЕУПОР 1997
  • Чуклай А.М.
  • Гореев Н.Г.
  • Шатилов О.Ф.
  • Бибаев В.М.
  • Гущин В.Я.
  • Коптелов В.Н.
  • Фролов О.И.
  • Спесивцев С.В.
  • Елкина Т.Б.
RU2167123C2
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОПЛОТНОГО УГЛЕРОДСОДЕРЖАЩЕГО ОГНЕУПОРА 2000
  • Сороколет Г.П.
  • Клещеногов С.Н.
  • Чуклай А.М.
  • Фролов О.И.
  • Гущин В.Я.
  • Никитенко В.Е.
  • Хроменков С.М.
RU2184714C2
ШПИНЕЛЬНО-ПЕРИКЛАЗОУГЛЕРОДИСТЫЙ ОГНЕУПОР 1997
  • Чуклай А.М.
  • Гореев Н.Г.
  • Шатилов О.Ф.
  • Бибаев В.М.
  • Гущин В.Я.
  • Коптелов В.Н.
  • Фролов О.И.
  • Спесивцев С.В.
  • Елкина Т.Б.
RU2148049C1
УГЛЕРОДСОДЕРЖАЩИЙ ОГНЕУПОР 1998
  • Можжерин В.А.
  • Сакулин В.Я.
  • Мигаль В.П.
  • Новиков А.Н.
  • Салагина Г.Н.
  • Аксельрод Л.М.
  • Штерн Е.А.
RU2151124C1
ГРАФИТО-ОКСИДНЫЙ ОГНЕУПОР 2014
  • Безруких Александр Иннокентьевич
  • Беляев Сергей Владимирович
  • Чупров Игорь Викторович
  • Баранов Владимир Николаевич
  • Лесив Елена Михайловна
  • Гильманшина Татьяна Ренатовна
  • Ширай Андрей Михайлович
  • Юрьев Павел Олегович
  • Косович Александр Александрович
RU2555167C1
Способ получения огнеупорного углеродсодержащего материала 2021
  • Фоменко Сергей Михайлович
  • Акишев Адиль
  • Толендиулы Санат
  • Абдулкаримова Роза Габдуловна
  • Алмагамбетов Марал Сарсенбаевич
RU2776253C1
МАГНЕЗИАЛЬНАЯ МАССА ДЛЯ ФУТЕРОВКИ МЕТАЛЛУРГИЧЕСКИХ АГРЕГАТОВ 1999
  • Кабаргин С.Л.(Ru)
  • Ермолычев Д.А.(Ru)
  • Аксельрод Л.М.(Ru)
  • Бойкова А.А.(Ru)
RU2159219C1

Реферат патента 2007 года МАГНЕЗИАЛЬНАЯ МАССА ДЛЯ ФУТЕРОВКИ МЕТАЛЛУРГИЧЕСКИХ АГРЕГАТОВ

Изобретение относится к огнеупорной промышленности и может быть использовано для изготовления и ремонта футеровки высокотемпературных агрегатов черной и цветной металлургии с температурой службы до 1650°С. Технический результат изобретения - предложенная масса обладает повышенной стойкостью к расплавам металла и шлака, пониженной теплопроводностью, хорошей адгезией к арматурной футеровке как при нанесении, так и при разогреве и в службе. Масса включает, мас.%: магнезиальный заполнитель фракции менее 2 мм - основа, неорганическое связующее - 3-10, волокнистый материал, представленный органическим и неорганическим волокном, взятыми в соотношении 1:(1,5-2,5), - 1-5, смесь антиоксиданта, углеродсодержащего материала и огнеупорного пластификатора, взятых в соотношении (1-2):(2-4):(1-5) соответственно, - 4-20. 2 табл.

Формула изобретения RU 2 292 321 C1

Магнезиальная масса для изготовления футеровки металлургических агрегатов, включающая магнезиальный заполнитель, неорганическое связующее, огнеупорный пластификатор, волокнистый материал, представленный органическим и неорганическим волокном, углеродсодержащий материал, отличающаяся тем, что дополнительно содержит антиоксидант в виде смеси с углеродсодержащим материалом и огнеупорным пластификатором, взятых в соотношении (1-2):(2-4):(1-5) соответственно, а соотношение органического и неорганического волокна в волокнистом материале составляет 1:(1,5-2,5) при следующем соотношении компонентов массы, мас.%:

Магнезиальный заполнительфракции менее 2 ммОсноваНеорганическое связующее3-10Волокнистый материал1-5Смесь антиоксиданта, углеродсодержащегоматериала и огнеупорного пластификатора4-20

Документы, цитированные в отчете о поиске Патент 2007 года RU2292321C1

Способ определения температуры плавления и застывания пленкообразующих веществ 1959
  • Киселев Н.А.
SU123755A1
СОСТАВ И СПОСОБ ОБРАЗОВАНИЯ МАССЫ КАРБОНИРОВАННЫХ ОГНЕУПОРОВ 2000
  • Суворов С.А.
  • Бочаров С.В.
  • Алексеева Н.В.
  • Можжерин А.В.
  • Сакулин А.В.
  • Новиков А.Н.
  • Салагина Г.Н.
  • Штерн Е.А.
RU2171243C1
СПОСОБ ИЗГОТОВЛЕНИЯ УГЛЕРОДСОДЕРЖАЩИХ ОГНЕУПОРОВ 1999
  • Подшивалов С.Л.
  • Абрамов Е.П.
  • Вяткин А.А.
  • Домрачев Н.А.
RU2152915C1
Способ непрерывной и полунепрерывной разливки металлов 1977
  • Козий Н.М.
  • Марченко И.К.
  • Ефимов В.А.
  • Якобше Р.Я.
SU758632A1
US 4248638 A, 03.02.1981.

RU 2 292 321 C1

Авторы

Ильин Геннадий Иванович

Даты

2007-01-27Публикация

2005-12-12Подача