СПОСОБ ПРОИЗВОДСТВА ЛИТЫХ ИЗДЕЛИЙ Российский патент 2007 года по МПК C21D1/78 C21C5/28 

Описание патента на изобретение RU2301272C2

Изобретение относится к металлургии, в частности к производству стальных литых изделий ответственного назначения, имеющих сложную конфигурации, работающих в условиях высоких нагрузок, которые должны проявлять высокий уровень пластических свойств в интервале температур от -60 до +200°С. Такие изделия применяются в судостроении, вагоностроении при изготовлении платформ большой грузоподъемности, сварных конструкций в северном исполнении и т.п.

Известен способ производства литых деталей из малоуглеродистой низколегированной стали, включающий выплавку полупродукта в виде жидкой стали в мартеновских печах с последующей доводкой в агрегате "ковш-печь", где жидкую сталь продувают нейтральным газом (аргоном) и нагревают до необходимой температуры. После выплавки производят разливку стали, кристаллизацию отливок и их термообработку путем нормализации (см. В.П.Рогова и др. Влияние внепечной обработки на химсостав и свойства стали для вагоностроения. В журнале "Металлургия машиностроения", 2004 г., №4, с.11-14).

В промышленном производстве суммарное время термообработки крупных (более 500 кг) изделий измеряется часами, а охлаждение на воздухе происходит достаточно медленно, поэтому структура металла, полученного в производственных условиях, от структуры металла, полученного в лабораторных условиях, отличается большей неоднородностью и крупнозернистостью. Это ухудшает показатели ударной вязкости материала при отрицательных температурах.

Недостатком способа является необходимость использования агрегата "ковш-печь" при выплавке металла, а также невысокий уровень низкотемпературной ударной вязкости металла изделий, получаемых в условиях промышленного производства, обусловленный неоднородностью и крупнозернистостью структуры металла.

Наиболее близким по технической сущности к получаемому результату и выбранным в качестве прототипа является способ производства литых изделий из малоуглеродистой низколегированной стали, включающий выплавку, разливку, кристаллизацию отливок и их термообработку путем нормализации (см. ОСТ 32.183-2001 "Тележки двухосные грузовых вагонов колеи 1520 мм. Детали литые. Рама боковая и балка надрессорная. Технические условия", МПС России, введен в действие 01.04.2002 г.).

Данный способ не требует использования специального оборудования (типа ковш-печь) для выплавки металла. Однако этот способ, как и описанный выше, не позволяет получить в условиях промышленного производства изделия с однородной мелкозернистой структурой и, следовательно, обеспечить требуемый уровень низкотемпературной ударной вязкости металла полученных изделий.

Задачей настоящего изобретения является повышение ударной вязкости при отрицательных температурах.

Техническим результатом, получаемым при реализации настоящего изобретения, является уменьшение размера зерна получаемой структуры металла.

Указанная задача решается за счет того, что в известном способе производства литых изделий из малоуглеродистой низколегированной стали, включающем выплавку и разливку стали, кристаллизацию отливок и их термообработку путем нормализации, согласно изобретению сталь дополнительно микролегируют путем ввода при разливке в ковш азота в количестве 0,006-0,032 мас.% и при отношении содержания кремния к азоту более 50 и менее 16 проводят дополнительную термообработку путем нагрева до температуры, определяемой по формуле:

tH=(940÷960)°C-40(Mn-Si)-200(C+N),

где tH - температура в °C,

Mn - содержание марганца в мас.%,

Si - содержание кремния в мас.%,

С - содержание углерода в мас.%,

N - содержание азота в мас.%,

выдержки и последующего охлаждения со скоростью 6-50 °С/мин.

Исследования, проведенные по источникам патентной и научно-технической информации, показали, что заявляемый способ неизвестен и не следует явным образом из изученного уровня техники, т.е. соответствует критериям новизна и изобретательский уровень.

Заявляемый способ может быть осуществлен на любом предприятии, специализирующемся в данной отрасли, т.к. для этого требуются известные материалы и стандартное оборудование, и широко использован при производстве стальных литых изделий, т.е. является промышленно применимым.

Микролегирование стали азотом в заявленном количестве позволяет добиться образования вторичных нитридов (карбонитридов), диспергирующих структуру литья и тормозящих рост зерен при термообработке. Данные частицы сдерживают рост зерен феррита и, что особенно важно, аустенита при нагреве, выдержке и охлаждении металла, обеспечивая формирование мелкозернистой однородной структуры готового изделия. Такой фазой, обеспечивающей тормозящий (ингибирующий) эффект при введении дополнительного азота, являются частицы нитрида кремния Si3N4 и частично нитрида алюминия. Экспериментально установлено, что при содержании 0,006-0,032 мас.% азота в стали и при отношении содержания азота к кремнию 16-50 обеспечивается формирование эффективной тормозящей нитридной фазы с оптимальными параметрами. Большее количество азота приводит как к образованию крупных нитридов, неэффективно тормозящих зеренную структуру, так и к повышению хрупкости металла вследствие увеличенной газонасыщенности изделий. Меньшее количество азота не обеспечивает достаточной плотности распределения дисперсных фаз, необходимых для стабилизации структуры.

В условиях недостатка ингибиторной фазы добиться измельчения зеренной структуры в готовых изделиях позволяет проведение повторной термообработки. Дополнительное прямое и обратное превращение при данной операции, увеличивая число центров зарождения аустенитных и ферритных зародышей, приводит к повышению однородности и диспергированию микроструктуры. Важным при этом является подавление (торможение) роста аустенитных зерен, что реализуется за счет ограничения температуры нагрева (tH) и регламентирования скорости охлаждения.

Температура нагрева при повторной термообработке не должна превышать температуры аномального роста аустенитного зерна, т.е. она должна быть выше АC3 - температуры завершения полиморфного превращения феррита в аустенит при нагреве и ниже температуры коагуляции (растворения) низкотемпературных вторичных нитридов в аустените. Легирующие элементы и микролегирующие добавки влияют на положение критических точек и на растворимость дисперсных нитридных фаз. Эмпирически их влияние выражается зависимостью tH=(940÷960)°С-40(Mn-Si)-200(C+N).

Проведение охлаждения со скоростью не ниже 6°С/мин предопределяется необходимостью получения дисперсной перлитной структуры (типа сорбита) с межпластинчатыми расстояниями меньше микрона и увеличения доли эвтектоида (точнее псевдоэвтектоида) в структуре и соответственно уменьшения в нем содержания углерода.

Проведение охлаждения со скоростью более 50°С/мин сопровождается возникновением структур игольчатой морфологии (типа бейнит-видманштетт) и снижением низкотемпературной вязкости.

Заявляемый способ был опробован в условиях промышленного производства при изготовлении боковых рам тележек грузовых железнодорожных вагонов.

Выплавку стали, содержащую (в мас.%) 0,21 С; 0,25 Si; 1,2 Mn; 0,13 Cr; 0,12 Ni; 0,12 Cu и 0,05 Al, осуществляли в 30-тонной электропечи. После этого металл порционно выпускали в разливочные ковши, где осуществляли окончательное раскисление и легирование, получая различные содержания Si (0,32%; 0,4%; 0,5%) и N (0,006%; 0,008%; 0,012%; 0,020%; 0,032%). Далее заливали металл в формы и после кристаллизации подвергали отливки термообработке путем нормализации (нагрев до 920°С, выдержка 1 час, охлаждение на воздухе). В термообработанном металле оценивали зеренную структуру, относительное сужение как наиболее объективную механическую характеристику пластичности металла, а также ударную вязкость при температуре +20°С на образцах с U-образным надрезом и при температуре -60°С на образцах с V и U-образными надрезами по ГОСТ 9454.

Результаты испытаний представлены в таблице 1, из которой видно, что:

1. Изготовление литых изделий по способу-прототипу (т.е. без микролегирования стали азотом в указанном диапазоне) привело к формированию в изделии крупнозернистой структуры и получению низких значений относительного сужения и ударной вязкости (вар.1).

2. Изготовление литых изделий по заявляемому способу (т.е. с проведением микролегирования стали азотом в указанном диапазоне) приводит к формированию мелкозернистой структуры (d не более 20 мкм) и существенному повышению значений относительного сужения (ψ не менее 59,4%), ударной вязкости (не менее 13 кгс·м/см2), (не менее 2,0 кгс·м/см2) см. вар.3-5, 8-10, 14-15. В этих вариантах легирования отношение содержания кремния и азота находится в пределах 16-50.

3. В случае соотношения кремния и азота более 50 и менее 16 (вар.2, 6, 7, 11, 13, 16) формируется крупнозернистая структура и соответственно значения относительного сужения ψ оказываются меньше 58%, ударной вязкости и оказываются меньше 9,8 кгс·м/см2 и 1,1 кгс·м/см2.

Далее изделия, соответствующие вариантам, показавшим неудовлетворительный уровень ударной вязкости и низкий уровень относительного сужения, подвергали повторной термообработке при 800°С, 940°С и температуре tн, рассчитанной по приведенной формуле.

Пример расчета tH:

а) содержание в мас.%: С - 0,21; Mn - 1,2; Si - 0,32; N - 0,006

tH=(940÷960)°С-40(1,2-0,32)-200(0,21+0,006)=861,6÷881,6°С

б) содержание в мас.%: С - 0,21; Mn - 1,2; Si - 0,5; N - 0,032

tH=(940÷960)°С - 40(1,2-0,5) - 200(0,21+0,032)=863,6÷883,6°С

Последующее охлаждение в температурном диапазоне развития превращения γ→α+ФКС, т.е. от Аr3 до 650-680°С вели со скоростями 2, 6, 50, 80°С/мин и далее на воздухе (или с указанными скоростями до охлаждения). После этого оценивали размер зерна, относительное сужение и ударную вязкость при температуре +20°С на образце с U-образным надрезом и при температуре -60°С на образцах c V и U-образными надрезами по ГОСТ 9454 (таблица 2). Здесь же приведены значения этих показателей для изделий, прошедших однократную термообработку.

Результаты, приведенные в таблице 2, показывают, что:

1. Проведение дополнительной термообработки на металле, полученном по способу-прототипу, не привело к существенным изменениям зеренной структуры, значений относительного сужения и ударной вязкости (вар.1-5).

2. Повторная термообработка металла, микролегированного азотом, по сравнению с однократной термообработкой позволяет существенно измельчить зеренную структуру (d менее 24 мкм), повысить относительное сужение (ψ более 59%) и ударную вязкость более 12 кгс·м/см2, более 4,9 кгс·м/см2 и более 1,9 кгс·м/см2). Однако достигается это лишь в случае проведения повторной термообработки по оптимизированному режиму, т.е. при значении tH, рассчитанной по приведенной формуле, и последующего охлаждения металла со скоростями в диапазоне 6-50°С/мин (вар.11, 12, 22, 23, 33, 34, 44, 45, 55, 56, 66 и 67).

3. Проведение повторной термообработки при температурах 800°С и 940°С так же, как и охлаждение со скоростями менее 6°С/мин и более 50°С/мин, не приводит к улучшению структуры, относительного сужения и ударной вязкости металла (вар.7-10, 13-16, 18-21, 24-27, 29-32, 35-38, 40-43, 46-49, 51-54, 57-60, 62-65, 68-71).

Таким образом, очевидно, что заявляемый способ производства литых изделий позволяет добиться уменьшение размера зерна получаемой структуры металла и за счет этого обеспечить повышение значений относительного сужения и ударной вязкости при положительных и отрицательных температурах.

Таблица 1.
Влияние содержания азота и кремния в стали на низкотемпературную ударную вязкость и размер зерен
Содержание кремния, мас.%Содержание азота, мас.%Отношение содержаний кремния и азота кгс·м/см2 кгс·м/см2 кгс·м/см2Размер зерна, мкмОтносительное сужение ψ, %10,4Прототип 0,0041009,53,051,053357,220,320,006539,73,01,03257,330,320,0084013,55,72,51860,140,320,0122714,06,22,8176250,320,0201613,85,42,41859,560,320,032108,83,10,873056,370,400,006669,23,10,92956,880,0085013,05,42,32059,490,0123314,76,83,01762,5100,0202014,56,22,81861,2110,032118,93,00,73056,2120,500,006839,03,40,72956,3130,008639,34,00,952957,4140,0124213,06,02,72061,5150,0202513,86,32,91862,0160,032149,64,01,053257,9

Таблица 2.
Влияние режима дополнительной термообработки на размер зерна и низкотемпературную пластичность металла
№ п/пОтношение содержаний Si и NКоличество термообработокТемпература повторной термообработки, °ССкорость охлаждения после повторной термообработки, °С/мин кгс·м/см2 кгс·м/см2 кгс·м/см2Размер зерна, мкмОтносительное сужение ψ, %1Прототип1--9,63,051,053357,022865 (tH)69,83,41,13157,435010,03,51,153057,4494069,93,61,22958,055010,03,71,22958,16531--9,53,01,03257,37280029,52,80,953557,2869,83,01,053058,095010,13,11,153057,210865 (tH)210,43,51,32958,311612,15,02,02159,4125012,25,12,12160,4138011,23,81,42858,41494069,93,11,13257,215509,83,01,13257,2168010,13,21,23157,617101--8,93,10,873055,2182800210,33,51,252956,019610,53,61,32857,0208010,33,91.32856,921870 (tH)210,44,01,32957,222612,55,02,12360,0235012,75,02,12260,2248010,44,01,352957,325940610,03,21,153157,2265010,13,51,253058,027809,93,31,153057,028661--9,23,10,92956,2292800210,33,41,22958,130611,23,81,452958,8315010,44,01,32958,032870 (tH)210,23,61,253057,533612,35,32,02160,1345013,05,52,22059,8358010,43,81,32858,236210,43,71,253057,9375010,53,61,252958,3388010,63,71,352958,539111--8,23,00,73055,440280028,42,60,753556,04169,53,11,103257,0425010,03,41,153157,243870 (tH)211,04,21,42958,244612,65,02,12060,5455013,05,72,32061,5468010,64,01,353057,247940610,44,31,353157,0485010,94,31,403158,1498011,24,51,403059,050631--9,84,00,952957,051280069,72,71,03257,252509,93,11,053156,9538010,23,21,253156,954875 (tH)29,93,41,202957,855613,45,72,351961,8565014,05,82,41962,0578011,73,81,72858,758940210,44,01,302958,0595010,64,11,353058,1608010,84,11,452958,361141--9,94,01,053257,162280069,82,61,053157,1635010,13,11,153057,5648011,03,41,43058,465875 (tH)210,83,41,352958,266614,55,62,51862,3675014,85,62,61864,0688011,83,71,62858,569940610,43,31,303058,0705010,83,51,43058,1718010,83,51,452958,5

Похожие патенты RU2301272C2

название год авторы номер документа
КОМПЛЕКСНЫЙ МОДИФИКАТОР ДЛЯ СТАЛИ 2006
  • Гольдштейн Владимир Яковлевич
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Пащенко Сергей Витальевич
  • Годик Леонид Александрович
  • Воронин Борис Васильевич
RU2318900C2
НАПОЛНИТЕЛЬ ПОРОШКОВОЙ ПРОВОЛОКИ ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ МЕТАЛЛУРГИЧЕСКИХ РАСПЛАВОВ 2010
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
  • Онищук Виталий Прохорович
RU2443785C1
СПОСОБ ПРОИЗВОДСТВА РЕЛЬСОВОЙ СТАЛИ 2009
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
RU2434060C2
ПРОВОЛОКА ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ МЕТАЛЛУРГИЧЕСКИХ РАСПЛАВОВ 2007
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
RU2375463C2
ТРУБНАЯ ЗАГОТОВКА ИЗ НИЗКОУГЛЕРОДИСТОЙ МИКРОЛЕГИРОВАННОЙ СТАЛИ 2006
  • Бобылев Михаил Викторович
  • Гонтарук Евгений Иванович
  • Лехтман Анатолий Адольфович
  • Угаров Андрей Алексеевич
  • Фомин Вячеслав Иванович
  • Шляхов Николай Александрович
RU2343210C2
КОНСТРУКЦИОННАЯ ЛЕГИРОВАННАЯ СТАЛЬ С ПОВЫШЕННОЙ ПРОЧНОСТЬЮ И СПОСОБ ТЕРМОУПРОЧНЕНИЯ ГОРЯЧЕКАТАНОГО ПРОКАТА 2013
  • Волосков Александр Дмитриевич
RU2541255C1
Сталь и цельнокатаное колесо, изготовленное из неё 2016
  • Филиппов Георгий Анатольевич
  • Изотов Владимир Ильич
  • Яндимиров Александр Арсентьевич
  • Павлова Наталья Владимировна
  • Васенина Елена Маратовна
  • Седышев Александр Игоревич
RU2615425C1
Способ производства высокопрочного износостойкого металлопроката 2020
  • Яковлева Полина Сергеевна
RU2765046C1
СПОСОБ ПРОИЗВОДСТВА ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ ДЛЯ ИЗГОТОВЛЕНИЯ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ НЕФТЕГАЗОПРОВОДОВ 2012
  • Стеканов Павел Александрович
  • Шаргунов Александр Витальевич
  • Курбан Виктор Васильевич
  • Кузьмин Анатолий Александрович
RU2500820C1
ПРОВОЛОКА ДЛЯ ВНЕПЕЧНОГО МИКРОЛЕГИРОВАНИЯ РАСПЛАВА СТАЛИ (ВАРИАНТЫ) 2008
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
RU2380430C2

Реферат патента 2007 года СПОСОБ ПРОИЗВОДСТВА ЛИТЫХ ИЗДЕЛИЙ

Изобретение относится к области металлургии, в частности производству стальных литых изделий ответственного назначения, имеющих сложную конфигурацию, работающих в условиях высоких нагрузок, которые должны проявлять высокий уровень пластических свойств в интервале температур от -60°С до +200°С. Для повышения ударной вязкости отливки в процессе разливки малоуглеродистую низколегированную сталь микролегируют путем ввода в ковш азота в количестве 0,006-0,032 мас.% при выполнении соотношения Si/N более 50 и менее 16, после кристаллизации отливку нормализуют, а затем нагревают до температуры, определяемой эмпирической формулой: tн=(940÷960)°C-40(Mn-Si)-200(C+N), выдерживают и охлаждают со скоростью 6-50°С/мин. Полученная отливка имеет мелкозернистую структуру. 2 табл.

Формула изобретения RU 2 301 272 C2

Способ производства литых изделий из малоуглеродистой низколегированной стали, включающий выплавку стали и разливку в ковш, кристаллизацию отливок и термообработку путем нормализации, отличающийся тем, что сталь дополнительно микролегируют путем ввода при разливке в ковш азота в количестве 0,006-0,032 мас.% и при отношении содержания кремния к азоту более 50 и менее 16 проводят дополнительную термообработку путем нагрева до температуры, определяемой по эмпирической формуле

tн=(940÷960)C°-40(Mn-Si)-200(C+N),

где - tн температура, С°;

Mn, Si, С, N - содержание, мас %,

выдержки и последующего охлаждения со скоростью 6-50 С°/мин.

Документы, цитированные в отчете о поиске Патент 2007 года RU2301272C2

СПОСОБ ПРОИЗВОДСТВА НИЗКОУГЛЕРОДИСТОЙ ЛИСТОВОЙ СТАЛИ 1990
  • Мазур Валерий Леонидович[Ua]
  • Франценюк Иван Васильевич[Ru]
  • Франценюк Людмила Ивановна[Ru]
  • Кусов Валерий Иванович[Ua]
  • Иванченко Виталий Георгиевич[Ua]
  • Какушкин Евгений Светозарович[Ua]
  • Корниенко Валерий Федорович[Ua]
  • Килиевич Александр Федорович[Ua]
RU2031962C1
СПОСОБ ПРОИЗВОДСТВА СТАЛИ 1999
  • Александров Б.Л.
  • Криночкин Э.В.
  • Цикарев Ю.М.
RU2172349C2
Способ микролегирования стали азотом 1990
  • Бурлака Геннадий Викторович
  • Монастырская Алевтина Ивановна
  • Новолодский Виктор Павлович
  • Пан Александр Валентинович
  • Третьяков Михаил Андреевич
  • Паляничка Владимир Александрович
  • Спирин Виктор Андреевич
  • Гордиенко Михаил Силович
  • Ильин Валерий Иванович
  • Топычканов Борис Иванович
SU1731826A1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛОСЫ ИЛИ ЛИСТА ИЗ СТАЛИ ДЛЯ ГЛУБОКОЙ ВЫТЯЖКИ 1996
  • Пронк Корнелис
  • Ден Хартог Хейберт Виллем
RU2159160C2
СПОСОБ ПРОИЗВОДСТВА ПРОКАТА КРУГЛОГО СЕЧЕНИЯ 2001
  • Морозов С.А.
  • Урцев В.Н.
  • Хабибулин Д.М.
  • Штоль В.Ю.
RU2186857C1
СПОСОБ ПРОИЗВОДСТВА СТАЛИ 2003
  • Носов С.К.
  • Рябов И.Р.
  • Крупин М.А.
  • Кушнарев А.В.
  • Ильин В.И.
  • Данилин Ю.А.
  • Галченков В.В.
  • Шеховцов Е.В.
  • Кромм В.В.
  • Шур Е.А.
  • Никитин С.В.
RU2233339C1

RU 2 301 272 C2

Авторы

Лобов Игорь Эдуардович

Кожевников Николай Георгиевич

Гольдштейн Владимир Аронович

Наумов Александр Владимирович

Шабалин Дмитрий Васильевич

Гольдштейн Владимир Яковлевич

Пащенко Сергей Витальевич

Даты

2007-06-20Публикация

2005-07-27Подача