КОМПЛЕКСНЫЙ МОДИФИКАТОР ДЛЯ СТАЛИ Российский патент 2008 года по МПК C22C35/00 

Описание патента на изобретение RU2318900C2

Изобретение относится к металлургии, в частности к производству массивных стальных изделий, имеющих высокий уровень прочностных, пластических и вязкостных характеристик, износостойкости, долговечности в интервале температур от -80°С до +200°С, которые широко применяются в машиностроении, судостроении, на железнодорожном транспорте, при изготовлении сварных конструкций, изделий в «северном исполнении» и т.п.

Эксплуатационная надежность и долговечность таких изделий определяется сопротивлением хрупкому разрушению, пластичностью и вязкостью стали. Это достигается:

а) снижением количества концентраторов напряжения в стали - включений (оксидов, сульфидов, оксисульфидов, шпинелей и т.д.), пор и других дефектов, являющихся источниками возникновения трещин;

б) дисперсностью структуры матрицы в готовых изделиях, обеспечивающей увеличение работы распространения трещин.

Реализация этих задач, помимо известных специальных способов выплавки стали - ЭШП, ВДП, обработки инертными газами и т.д., осуществляется модифицированием металла при выплавке особыми составами - модификаторами.

Так известно использование силикокальция для раскисления и модифицирования сталей. Силикокальций содержит 10-30% Са, 45-55% Si, 1-2% Al, 0,2-1,0% С, 0,02-0,04% Р (см. ГОСТ 4762-71 «Силикокальций. Технические условия.»).

К недостаткам силикокальция относится его слабая способность диспергировать аустенитное зерно, что приводит к огрублению структуры готовых изделий даже в случае их последующей термообработки. В результате имеет место неудовлетворительный уровень вязкостных и пластических свойств.

Наиболее близким по технической сущности, достигаемому результату и выбранным в качестве прототипа является модификатор-инокулянт для стали серии INSTEEL. Данный модификатор - это сплав на железокремнистой основе с добавками таких активных элементов как кальций, барий, РМЗ, алюминий и др. в различных комбинациях. Так модификатор INSTEEL-1 содержит (в мас.%): 45-50% Si, 8-10% Са, 8-10% Ва, 8-10% Al, остальное - Fe; модификатор INSTEEL-4 содержит (в мас.%): 40-45% Si, 10-12% Ca, 7-8% РМЗ, 7-8% Al, 1-1,5% Mg, 4-5% Ti, остальное - Fe (см. Каталог ООО Промышленная Компания НПП «Модификаторы для внепечной обработки чугуна и стали», 2004 г., с.10).

Данный состав, способствуя раскислению и десульфурации стали, а также формированию глобулярных неметаллических включений, не содержит в достаточном количестве элементы, способствующие измельчению зеренной структуры и, следовательно, не обеспечивает высокий уровень прочности, пластичности и ударной вязкости металла.

Задачей настоящего изобретения является повышение прочности, пластичности и ударной вязкости стали.

Техническим результатом, получаемым при реализации настоящего изобретения, является оптимизация структурного состояния стали, а именно, повышение однородности и дисперсности структуры, формирующейся при диффузном распаде аустенита в процессе охлаждения изделий.

Указанная задача решается за счет того, что комплексный модификатор для стали, содержащий кремний, кальций, алюминий и железо, согласно изобретению дополнительно содержит азот при следующих соотношениях компонентов, мас.%:

Кремний40-50Кальций21-42Алюминий1-2Азот1-20Железоостальное

а его фазовый состав включает не менее 2,5-25 объемн. % нитридов.

Модификатор может дополнительно включать барий в таком количестве, что суммарное содержание кальция и бария составляет не менее 21 мас.%.

Исследования, проведенные по источникам патентной и научно-технической информации, показали, что заявляемый модификатор неизвестен и не следует явным образом из изученного уровня техники, т.е. соответствует критериям новизна и изобретательский уровень.

Заявляемый модификатор может быть изготовлен на любом предприятии, специализирующемся в данной отрасли, т.к. для этого требуются известные материалы и стандартное оборудование, и широко использован при производстве стальных изделий, т.е. является промышленно применимым.

Введение модификатора в сталь для улучшения структурных характеристик металла должно решать четыре основные задачи:

а) дополнительное раскисление и десульфурация;

б) уменьшение количества оксидов, оксисульфидов, сульфидов и глобуляризация оставшихся неметаллических включений;

в) очищение границ зерен и околограничных участков от частиц и сегрегации, приводящих к охрупчиванию металла;

г) формирование мелкозернистой структуры как после кристаллизации, так и на последующих технологических операциях получения готовых изделий.

Эффективность решения каждой из задач зависит от состава используемого модификатора и условий его ввода в металл. Поскольку в настоящее время введение модификатора, как правило, осуществляется порошковой проволокой, в которой модификатор является наполнителем, а оболочка - свернутая в трубку стальная лента, особое значение приобретает правильный подбор состава модификатора. Снижение содержания кислорода и серы, уменьшение количества неметаллических включений и формирование глобулярной формы частиц в металле обычно обеспечивается за счет наличия в модификаторе 10-15% Са, либо Са+Ва, т.к. поведение в жидкой стали Ва, как одного из щелочноземельных элементов во многом аналогично Са, а также 1-2% Al.

Использование растровой электронной микроскопии, микрорентгеноспектрального и рентгеноструктурного анализа показало, что Са и Ва в модификаторе, как правило, находятся в виде сплавов и соединений с кремнием, образуя различные фазы: силикокальций - CaSi2, силикобарий - Ba(AlSi)4, комплексный сплав - Ca-Si-Ba. Количество и состав этих фаз в структуре модификатора зависит от содержания Са, Ва, Si, Al и др. элементов. Так известно, что при содержании Са (или суммарного количества Са+Ва) в модификаторе не более 20%, наряду с вышеуказанными фазами, в структуре присутствуют различные низкотемпературные эвтектики: Si-Ca-Fe-Al, Ca2MgSi3, Fe-Si-Ca-Ti и др., концентрирующиеся преимущественно по границам зерен.

Очищение границ зерен и приграничных объемов от частиц, сегрегаций и эвтектик, охрупчивающих металл и содержащих дополнительно фосфор, серу, сурьму и др., является более сложной задачей. Для ее решения важно как само присутствие, так и количественное содержание Са, который помимо раскислительных свойств, является горофильным элементом и, имея ограниченную растворимость в твердом состоянии в сталях (до 0,003%), концентрируется преимущественно в приграничных объемах зерен, вытесняя оттуда соединения и фазы, содержащие фосфор, серу и т.д. Экспериментально установлено наличие Са (не менее 0,002%) в твердом растворе и присутствие его в приграничных объемах только в случае больших концентраций Са в модификаторе - не менее 21%. При этих концентрациях обеспечивается максимальный эффект модифицирования, а в структуре такого модификатора количество Са и Ва содержащих фаз составляет не менее 50 объемн.%. При меньшем содержании Са в модификаторе присутствует значительное количество низкотемпературных эвтектик, концентрирующихся по границам зерен в стали, а Са хватает лишь на раскисление, десульфурацию и глобуляризацию остающихся включений. На практике возможна частичная замена в модификаторе Са на Ва. Совместное их присутствие в стали приводит к снижению активности каждого элемента, уменьшает парциальное давление паров Са и увеличивает тем самым его «живучесть», приводя к повышению остаточного содержания Са в стали. Металлургическая практика показывает, что использование больших количеств Са, либо Са+Ва в составе модификатора (>42-45 мас.%) нежелательно, т.к. в этом случае при обработке стали наблюдается значительный пироэффект, сопровождающийся выбросом металла из ковша.

Ранее при всех известных вариантах модифицирования задача измельчения зеренной структуры стали решалась, как правило, за счет использования в составе модификатора дисперсных высокотемпературных частиц (инокулянтов), вводимых в расплавленный металл. При этом частицы должны иметь определенные кристаллографические параметры и диспергировать структуру за счет увеличения количества зародышевых центров. Другой вариант измельчения структуры - введение поверхностно-активных добавок, которые осаждаются при кристаллизации на границах растущих дендритов (зерен), уменьшают поверхностную энергию границ и замедляют скорость их движения.

В данном изобретении предложено иное решение. Подавление роста зерен, и в первую очередь, ограничение размеров аустенитных кристаллитов, осуществляется дисперсными нитридными частицами, выделяющимися из твердого раствора как непосредственно при охлаждении литого металла, так и при последующей термообработке изделий. Необходимое их количество и степень дисперсности обеспечиваются определенным соотношением нитридообразующих элементов и изменением их равновесного содержания в растворе при различных температурах. Подчеркнем, что речь идет не о первичных неметаллических включениях (размером 1-3 мкм), образующихся при кристаллизации стали, а о частицах величиной 100-700Å, выделяющихся из твердого раствора, которые сдерживают рост зерен феррита и аустенита при нагреве, выдержке и охлаждении металла, обеспечивая тем самым высокий уровень прочностных, пластических и вязкостных характеристик готовых изделий. Установлено, что управление дисперсностью и однородностью зеренной структуры оказывается наиболее эффективным, если дисперсные фазы представляют собой нитриды (карбонитриды) алюминия, кремния, ванадия, т.е. такие включения, которые могут растворяться и выделяться в диапазоне температур проведения термообработок. При этом показано, что образование нитридов в количестве, достаточном для торможения роста зерен, происходит при содержании азота в модификаторе 1-20 мас.%, что соответствует суммарному количеству химических соединений нитридов кремния, алюминия и др. в структуре модификатора в пределах 2,5-25 объемн. %.

При содержании азота в модификаторе менее 1 мас.% не образуется достаточная плотность вторичных нитридов и формируется крупнозернистая структура готовых изделий. При содержании азота в модификаторе более 20 мас.% и, соответственно, при наличии в структуре более 25 объемн.% фаз, содержащих азот, в стали образуются крупные нитриды и увеличивается хрупкость металла.

Заявляемый модификатор был опробован при производстве боковых рам тележек грузовых вагонов.

Комплексный модификатор предлагаемого состава получали следующим образом. Исходные материалы, включающие силикокальций (20 и 30 мас.% Са), азотированный ферросилиций (34 мас.% N), силикобарий (22 мас.% Ва), металлический кальций, механически смешивали в различных пропорциях, получая комплексные модификаторы, отличающиеся по химическому и фазовому составу.

Выплавку стали, содержащей (в мас.%): 0,20% С; 0,26% Si; 1,2% Mn; 0,14% Cr; 0,13% Ni; 0,13% Ca; 0,05% Al; 0,008 N, осуществляли в 30-тонной электропечи. Далее металл порционно выпускали в разливочные ковши, в которых осуществляли окончательное раскисление Al из расчета 0,5 кг/т жидкой стали, а затем модифицирование порошковой проволокой с различным химическим и фазовым составом наполняющих ее модификаторов в количестве 1,1 кг проволоки на тонну жидкой стали. Модифицированный металл заливали в формы и после кристаллизации изделия подвергали термообработке при 900°С в течение часа с последующим охлаждением на воздухе. В термообработанном металле оценивали структуру, временное сопротивление, относительное удлинение и ударную вязкость на образцах с V-образным надрезом при температуре -60°С по ГОСТ 9454-78. Фазовый состав используемых модификаторов изучали с использованием растровой электронной микроскопии, микрорентгеноспектрального и рентгеноструктурного анализа.

Результаты определения химического и фазового состава модификаторов приведены в таблице 1. Составы модификаторов по вариантам 1 и 2 соответствуют модификаторам-инокулянтам INSTEEL-1 и INSTEEL-4 (состав модификаторов приведен в описании прототипа), выбранным в качестве прототипа.

В таблице 2 представлены результаты оценки зеренной структуры и механических свойств термообработанных изделий, полученных из отливок, модифицированных приведенными в таблице составами модификаторов.

Из анализа данных, приведенных в таблицах 1 и 2, видно, что:

1. Применение модификатора, состав которого соответствует прототипу (варианты 1 и 2) приводит к формированию в модификаторе кальций и барийсодержащих фаз в количестве 28-37 объемн.%, а в готовых изделиях крупнозернистой (d>27 мкм) структуры, низких значений прочности σв, пластичности δ и ударной вязкости аKCV-60°C

2. Применение модификатора, имеющего заявленный химический состав, приводит к формированию в модификаторе 2,5-25 объемн.% нитридов не менее 50 объемн.% кальций и барийсодержащих фаз (варианты 4-7, 10-13), а в готовых изделиях мелкозеренной структуры (d≤23 мкм) и высоких значений прочности (σв>58 кг/см2), пластичности (δ>26,8%) и ударной вязкости (аKCV-60°C≥2 кгс·м/мм2).

3. Использование модификатора, имеющего в составе достаточное суммарное количество Са и Ва, но не содержащего азот (варианты 3, 9) либо имеющего в составе более 25 мас.% азота (варианты 8, 14), приводит к огрублению структуры готовых изделий и падению уровня механических свойств.

Таким образом, анализ приведенных в таблицах данных показывает, что заявляемый модификатор обеспечивает повышение прочности, пластичности и ударной вязкости за счет оптимизации структурного состояния стали, а именно, повышения однородности и дисперсности структуры, формирующейся при диффузном распаде аустенита в процессе охлаждения изделий.

Таблица 1Химический и фазовый состав использованных модификаторовХимический состав модификаторов, мас.%Фазовый состав модификаторов, объемн.%№ п/пSiCaBaAlРМЗTiMgNFeСиликокальций CaSi2Силикобарий Ba(SiAl)4Силикокальцийбарий Ca-Si-BaНитриды Si3N4, AlN4 и др.15010108----ост.20512-24512-8841-ост.28---34521-1,0----ост.50---44521-1,2---1ост.51--2,554530-1,0102-5ост.70--1364530-1,0---10ост.72--1875025-1,2---20ост.58--2584525-1,2---25ост.60--309451561,0----ост.28322-10501561,0---1ост.282212,511451561,082-5ост.302211412452551,5---10ост.521151813452551,0---20ост.501162514452051,0---25ост.4211529

Таблица 2Влияние состава модификаторов на зеренную структуру и механические свойства термообработанных изделий№ п/пСодержание элементов, мас.%Суммарное содержание фаз, объемн.%d, мкмσв, кг/см2δ, %аKCV-60°C, кгс·м/мм2SiCaBaAlКальций-барийсодержащие фазы (таблица 1)Нитриды (таблица 1)1501010837-2955,221,21,024512-828-3054,023,01,134521-1,050-2855,322,31,244521-1,2512,52358,327,62,054530-1,070131959,028,32,664530-1,072181859,128,23,075025-1,258251758,927,82,984525-1,260302756,121,01,09451561,053-3055,221,01,010501561,0512,52358,226,82,211451561,053142058,027,22,812452551,568181859,328,13,013452551,067251660,528,02,9514452051,058292656,222,31,15

Похожие патенты RU2318900C2

название год авторы номер документа
СПОСОБ ВНЕПЕЧНОЙ ОБРАБОТКИ УГЛЕРОДИСТЫХ И НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ 2012
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
  • Онищук Виталий Прохорович
RU2497955C1
ПРОВОЛОКА ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ МЕТАЛЛУРГИЧЕСКИХ РАСПЛАВОВ 2007
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
RU2375462C2
МОДИФИЦИРУЮЩАЯ СМЕСЬ ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ СТАЛИ 2014
  • Филиппенков Анатолий Анатольевич
  • Попов Сергей Ильич
  • Шаньгин Юрий Павлович
  • Рощупкин Владимир Николаевич
  • Шатохин Игорь Михайлович
  • Рыдлевский Ярослав Евгеньевич
  • Кощеев Сергей Николаевич
  • Троп Лариса Анатольевна
  • Пранов Александр Алексеевич
  • Зиатдинов Мансур Хузиахметович
  • Гореленко Роман Александрович
  • Пономарев Сергей Григорьевич
  • Чащин Андрей Александрович
  • Чернов Александр Васильевич
  • Калимуллин Эдуард Викторович
  • Манашев Ильдар Рауэфович
  • Удинцев Сергей Леонидович
  • Двойнишников Олег Валериевич
  • Борщ Борис Васильевич
RU2567928C1
ПРОВОЛОКА ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ МЕТАЛЛУРГИЧЕСКИХ РАСПЛАВОВ 2007
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
RU2375463C2
СПОСОБ ПРОИЗВОДСТВА РЕЛЬСОВОЙ СТАЛИ 2009
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
RU2434060C2
ПРОВОЛОКА ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ МЕТАЛЛУРГИЧЕСКИХ РАСПЛАВОВ (ВАРИАНТЫ) 2008
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
RU2369642C1
ПОРОШКОВАЯ ПРОВОЛОКА ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ ЖЕЛЕЗОУГЛЕРОДИСТОГО РАСПЛАВА (ВАРИАНТЫ) 2011
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
  • Онищук Виталий Прохорович
RU2491354C2
СПЛАВ ДЛЯ РАСКИСЛЕНИЯ, РАФИНИРОВАНИЯ, МОДИФИЦИРОВАНИЯ И МИКРОЛЕГИРОВАНИЯ СТАЛИ (ВАРИАНТЫ) 2010
  • Чернявский Михаил Сергеевич
  • Пимнев Дмитрий Юрьевич
RU2434966C2
НАПОЛНИТЕЛЬ ПОРОШКОВОЙ ПРОВОЛОКИ ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ МЕТАЛЛУРГИЧЕСКИХ РАСПЛАВОВ 2010
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
  • Онищук Виталий Прохорович
RU2443785C1
ПРОВОЛОКА ДЛЯ ВНЕПЕЧНОГО МИКРОЛЕГИРОВАНИЯ РАСПЛАВА СТАЛИ (ВАРИАНТЫ) 2008
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
RU2380430C2

Реферат патента 2008 года КОМПЛЕКСНЫЙ МОДИФИКАТОР ДЛЯ СТАЛИ

Изобретение относится к металлургии, в частности к производству массивных стальных изделий, имеющих высокий уровень прочностных, пластических и вязкостных характеристик, износостойкости в интервале температур от -80°С до +200°С, которые широко применяются в машиностроении, судостроении, при изготовлении сварных конструкций и изделий для северных районов. Модификатор дополнительно содержит азот при следующих соотношениях компонентов, мас.%: кремний 40-50, кальций 21-42, алюминий 1-2, азот 1-20, железо остальное, а его фазовый состав включает не менее 2,5-25 об.%: нитридов. Он также дополнительно содержит барий в таком количестве, что суммарное содержание кальция и бария составляет не менее 21 мас.%. Изобретение позволяет оптимизировать структурное состояние стали, а именно повысить однородность и дисперсность структуры, формирующейся при диффузном распаде аустенита в процессе охлаждения изделий. 1 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 318 900 C2

1. Комплексный модификатор для стали, содержащий кремний, кальций, алюминий и железо, отличающийся тем, что он дополнительно содержит азот при следующих соотношениях компонентов, мас.%:

Кремний40-50Кальций21-42Алюминий1-2Азот1-20ЖелезоОстальное,

а его фазовый состав включает не менее 2,5-25 об.% нитридов.

2. Модификатор по п.1, отличающийся тем, что он дополнительно содержит барий в таком количестве, что суммарное содержание кальция и бария составляет не менее 21 мас.%.

Документы, цитированные в отчете о поиске Патент 2008 года RU2318900C2

Каталог ООО Промышленная компания НПП «Модификаторы для внепечной обработки чугуна и стали», Челябинск, 2004, с.10
Способ получения ванадийсодержащей стали 1986
  • Бреус Валентин Михайлович
  • Милюц Валерий Георгиевич
  • Павлов Вячеслав Владимирович
  • Чирихина Светлана Леонидовна
SU1323579A1
Азотсодержащая лигатура для стали и высокопрочная сталь 1989
  • Смирнов Леонид Андреевич
  • Панфилова Людмила Михайловна
  • Срогович Марина Исааковна
  • Гольдштейн Михаил Израилевич
  • Бронфин Борис Моисеевич
  • Филиппенков Анатолий Анатольевич
  • Соколова Галина Игоревна
  • Емельянов Андрей Александрович
  • Закамаркин Михаил Кириллович
  • Журавлев Анатолий Иванович
  • Васильев Анатолий Петрович
  • Лойферман Михаил Абрамович
  • Адельшин Юрий Гурьевич
  • Жданович Казимир Казимирович
  • Лобанов Аркадий Васильевич
  • Лапытько Владимир Иванович
  • Ищенко Владимир Иванович
  • Дашевский Виктор Давыдович
  • Козлов Виталий Григорьевич
  • Галкин Сергей Николаевич
  • Якушев Олег Степанович
  • Карев Владислав Александрович
  • Горох Владимир Григорьевич
  • Сулименко Владимир Трофимович
  • Паслов Владимир Николаевич
  • Филатов Виталий Демьянович
SU1744138A1
СПОСОБ ПРОИЗВОДСТВА СТАЛИ 2003
  • Носов С.К.
  • Рябов И.Р.
  • Крупин М.А.
  • Кушнарев А.В.
  • Ильин В.И.
  • Данилин Ю.А.
  • Галченков В.В.
  • Шеховцов Е.В.
  • Кромм В.В.
  • Шур Е.А.
  • Никитин С.В.
RU2233339C1
Способ получения молочной кислоты 1922
  • Шапошников В.Н.
SU60A1

RU 2 318 900 C2

Авторы

Гольдштейн Владимир Яковлевич

Исхаков Альберт Ферзинович

Малько Сергей Иванович

Пащенко Сергей Витальевич

Годик Леонид Александрович

Воронин Борис Васильевич

Даты

2008-03-10Публикация

2006-01-10Подача