СПОСОБ ПОЛУЧЕНИЯ ВАНАДИЙ-ТИТАНОВОГО КАТАЛИЗАТОРА Российский патент 2007 года по МПК B01J37/03 B01J23/22 B01J21/06 B01D53/70 B01D53/56 C07D307/89 

Описание патента на изобретение RU2306980C2

Изобретение относится к способам получения оксидных ванадий-титановых катализаторов окислительно-восстановительных реакций, например промышленных процессов получения фталевого ангидрида окислением о-ксилола, селективного восстановления оксидов азота и обезвреживания хлорорганических соединений.

Известен способ получения ванадий-титанового катализатора окисления хлорбензола с молярным отношением V:Ti=10. Катализатор получают путем перемешивания метаванадата аммония (NH4VO3) и суспензии оксида титана в водном растворе мочевины с добавкой щавелевой кислоты до рН, равной 4, последующего нагревания до 90°С в течение 20 ч. После этого суспензию сушат и прокаливают при 500°С 10 ч (Moon S.W., Lee G-D., Park S.S. and Hong S-S. "Catalytic combustion of chlorobenzene over V2O5/TiO2 catalysts prepared by the precipitation-deposition method", J. React. Kinet. Catal. Lett., vol.82, No2, p.303-310,2004).

Недостатком известного способа является низкая активность полученного катализатора при окислении хлорбензола, обусловленная, в частности, его низкой удельной поверхностью (9 м2/г). Так, при объемной скорости газового потока 15000 ч-1 конверсия хлорбензола составляет 90% при 327°С.

Известен способ получения ванадий-титанового катализатора путем помещения диоксида титана (анатаза) в водный раствор метаванадата аммония (NH4VO3), доведения рН этой суспензии до 7,0-7,1 (добавлением NH4OH или NHO3), перемешивания в течение 48 ч и фильтрации. После этого полученный продукт сушат при 60°С в течение 24 ч и прокаливают в атмосфере воздуха при 500°С в течение 2 ч. Затем порошок катализатора может быть нанесен на инертную подложку (ЕР 1145762, МКИ B01J 23/22, 2001).

Недостатком известного способа является невысокая активность полученного катализатора при окислении хлорбензола, обусловленная, в частности, его низкой удельной поверхностью (29 м2/г). Так, при концентрации хлорбензола в воздухе 9000-900 ppm и объемной скорости газового потока 20000 ч-1 конверсия хлорбензола равна всего 39% при 450°С, а при более низкой концентрации хлорбензола, равной 265 ppm, и более низкой объемной скорости газового потока, равной 15000 ч-1, конверсия хлорбензола равна 90% при 327°С. Кроме того, к недостаткам способа относятся его значительная длительность (более 3-х суток) и низкая термическая устойчивость полученного катализатора. Так, уже при 500°С в составе катализатора наблюдается появление фазы рутила, что значительно снижает его активность.

Таким образом, перед авторами стояла задача разработать способ получения ванадий-титанового катализатора, обеспечив высокую активность катализатора при низких температурах, более высокую термическую устойчивость и сократив время процесса его получения.

Поставленная задача решена в предлагаемом способе получения ванадий-титанового катализатора, который включает получение раствора титанила сульфата, добавление к полученному раствору раствора аммиака и затем раствора пероксида ванадия или добавление к полученному раствору ванадила сульфата или оксалата и затем раствора аммиака, возможно выдержку образовавшейся суспензии после смешения растворов, последующую фильтрацию и прокалку при 450°С.

В настоящее время из патентной и научно-технической литературы не известен способ получения ванадий-титанового катализатора, в котором процесс получения катализатора ведут из раствора смеси исходных соединений.

Все известные способы получения ванадий-титановых катализаторов предполагают взаимодействие растворов солей ванадия с твердым порошком диоксида титана с последующей фильтрацией и прокалкой. В результате получают оксидный катализатор, где оксид ванадия нанесен на поверхность диоксида титана. Принципиальным отличием предлагаемого способа от известных является ведение процесса в смеси растворов с использованием осаждения аммиаком. В результате получают катализатор со структурой анатаза, в которую внедрены ионы ванадия.

Предлагаемый способ может быть осуществлен следующим образом. Получают раствор титанила сульфата в воде, добавляют при перемешивании водный раствор аммиака и раствор пероксида ванадия. Образовавшуюся суспензию нагревают при 60-80°С в течение 1-2 ч. В случае использования в качестве исходной смеси смесь растворов титанила сульфата и ванадила сульфата или оксалата в воде к смеси добавляют водный раствор аммиака. Образовавшийся в первом и во втором случаях осадок отфильтровывают, медленно нагревают до 450±5°С и выдерживают при этой температуре в течение 10ч. Затем охлаждают до комнатной температуры. Полученный продукт аттестуют рентгенофазовым анализом. Удельную поверхность определяют методом "БЭТ" на анализаторе TriStar 3000 V6.03A.

Полученный катализатор испытывают в реакции окисления хлорбензола в проточном реакторе и интервале температур 300-350°С. В реактор загружают 0,5 г катализатора в виде порошка с размером частиц менее 0,25 мм в смеси с четырьмя объемами карбида кремния с размером частиц также менее 0,25 мм. При температуре 300-350°С в реактор подают паровоздушную смесь хлорбензола с воздухом (концентрация хлорбензола в смеси 9000-900 ppm) с объемной скоростью 20000 ч-1. В газах после реактора определяют непрореагировавший хлорбензол путем адсорбции его на силикагеле (размер частиц 0,25-0,5 мм), элюирования его ацетоном и хроматографирования с внутренним стандартом из дурола. Превращение хлорбензола в продукты полного сгорания (СО2) определяют весовым методом (поглощение аскаритом). Результаты испытаний приведены в таблице.

ТаблицаСостав катализатораКонцентрация хлорбензола, ppmТемпература процесса, °СКонверсия хлорбензола, %Выход продуктов полного окисления (CO2), %Пример 19000
9000
9000
9000
900
345
330
310
300
300
100
100
99
95
100
100
100
99
95
100
Пример 2.9000
9000
9000
900
350
340
320
300
100
100
97
100
100
100
97
100
Пример 3.9000
9000
900
340
320
300
100
99
100
100
99
100

Согласно данным рентгенофазового анализа катализатор, полученный предлагаемым способом, более термически устойчив, чем известный, поскольку появление фазы рутила наблюдается при 600°С.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Растворяют 7,36 г TiOSO4·2Н2О в 200 мл воды; добавляют при перемешивании 5,9 мл водного раствора аммиака с содержанием 24% NH3 и пероксидный раствор 0,34 г V2О5 в 30 мл воды. Образовавшуюся суспензию нагревают при 60°С в течение 2 часов. Осадок отфильтровывают, медленно нагревают до 450°С и выдерживают при этой температуре в течение 10 часов. После охлаждения до комнатной температуры получают оксидный ванадий-титановый катализатор с молярным отношением V:Ti=1:10 со структурой анатаза и удельной поверхностью 92 м2/г.

Пример 2. В раствор с концентрацией 41,11 г/л TiOSO4 и 4,19 г/л VOSO4 добавляют при постоянном перемешивании водный раствор аммиака с содержанием 24% NH3 по достижении рН=8. Осадок отфильтровывают, медленно нагревают до 450°С и выдерживают при этой температуре в течение 10 часов. После охлаждения до комнатной температуры получают оксидный ванадий-титановый катализатор с молярным отношением V:Ti=1:10 со структурой анатаза и удельной поверхностью 66 м2/г.

Пример 3. В раствор с концентрацией 41,11 г/л TiOSO4 и 3,984 г/л VOC2O4 добавляют при постоянном перемешивании водный раствор аммиака с содержанием 24% NH3 по достижении рН=8. Осадок отфильтровывают, медленно нагревают до 450°С и выдерживают при этой температуре в течение 10 часов. После охлаждения до комнатной температуры получают оксидный ванадий-титановый катализатор с молярным отношением V:Ti=1:10 со структурой анатаза и удельной поверхностью 76 м2/г.

Таким образом, предлагаемый способ позволяет получить термоустойчивый катализатор окисления хлорбензола, обладающий высокой каталитической активностью. Кроме того, значительно снижается длительность процесса получения катализатора (10-12 часов против 72 часов в известном способе).

Похожие патенты RU2306980C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРА-НАНОДИСПЕРСНОГО ПОРОШКА ОКСИДА ПЕРЕХОДНОГО МЕТАЛЛА ИЛИ СМЕСИ ОКСИДОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ 2008
  • Швейкин Геннадий Петрович
  • Николаенко Ирина Владимировна
RU2400428C2
СПОСОБ ПОЛУЧЕНИЯ НАНОИГЛ ОКСИДНОЙ ВАНАДИЕВОЙ БРОНЗЫ НАТРИЯ 2013
  • Захарова Галина Степановна
RU2549421C2
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРА-НАНОДИСПЕРСНОГО ПОРОШКА ОКСИДА ПЕРЕХОДНОГО МЕТАЛЛА ИЛИ СМЕСИ ОКСИДОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ 2006
  • Швейкин Геннадий Петрович
  • Николаенко Ирина Владимировна
RU2337791C2
Способ получения оксидных катализаторов для процесса окислительной конверсии этана в этилен 2016
  • Бондарева Валентина Михайловна
  • Ищенко Евгения Викторовна
  • Шадрина Любовь Алексеевна
  • Соболев Владимир Иванович
  • Пармон Валентин Николаевич
  • Парахин Олег Афанасьевич
  • Чернов Михаил Павлович
RU2634593C1
СПОСОБ ПОЛУЧЕНИЯ ФОТОКАТАЛИЗАТОРА НА ОСНОВЕ ДИОКСИДА ТИТАНА 2009
  • Зверева Ирина Алексеевна
  • Чурагулов Булат Рахметович
  • Иванов Владимир Константинович
  • Баранчиков Александр Евгеньевич
  • Шапорев Алексей Сергеевич
  • Миссюль Александр Борисович
RU2408427C1
СПОСОБ ПОЛУЧЕНИЯ ДИОКСИДА ТИТАНА 2022
  • Кузин Евгений Николаевич
  • Кручинина Наталия Евгеньевна
RU2801580C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ МУРАВЬИНОЙ КИСЛОТЫ 2007
  • Андрушкевич Тамара Витальевна
  • Золотарский Илья Александрович
  • Попова Галина Яковлевна
RU2356625C2
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДОЖИГА ДИЗЕЛЬНОЙ САЖИ 2011
  • Руднев Владимир Сергеевич
  • Лебухова Наталья Викторовна
  • Чигрин Павел Геннадьевич
  • Лукиянчук Ирина Викторовна
  • Макаревич Константин Сергеевич
  • Кириченко Евгений Александрович
RU2455069C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ МУРАВЬИНОЙ КИСЛОТЫ 2007
  • Андрушкевич Тамара Витальевна
  • Попова Галина Яковлевна
  • Золотарский Илья Александрович
RU2356626C2
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА КАРБИДА ТИТАНА 2014
  • Швейкин Геннадий Петрович
  • Николаенко Ирина Владимировна
  • Кедин Николай Александрович
RU2561614C1

Реферат патента 2007 года СПОСОБ ПОЛУЧЕНИЯ ВАНАДИЙ-ТИТАНОВОГО КАТАЛИЗАТОРА

Изобретение относится к способам получения оксидных ванадий-титановых катализаторов окислительно-восстановительных реакций, например промышленных процессов получения фталевого ангидрида окислением оксилола, селективного восстановления оксидов азота и обезвреживания хлорорганических соединений. Способ получения ванадий-титанового катализатора включает следующие стадии: получение раствора титанила сульфата; добавление к полученному раствору раствора аммиака и затем раствора пероксида ванадия или добавление к полученному раствору ванадила сульфата или оксалата и затем раствора аммиака; возможно выдержку образовавшейся суспензии после смешения растворов; последующую фильтрацию и прокаливание при 450°С. Предлагаемый способ позволяет получить термоустойчивый катализатор окисления хлорбензола, обладающий высокой каталитической активностью. Кроме того, значительно снижается длительность процесса получения катализатора: 10-12 часов против 72 часов в известном способе. 1 табл.

Формула изобретения RU 2 306 980 C2

Способ получения ванадий-титанового катализатора, отличающийся тем, что он включает получение раствора титанила сульфата, добавление к полученному раствору раствора аммиака и затем раствора пероксида ванадия или добавление к полученному раствору ванадила сульфата или оксалата и затем раствора аммиака, возможно выдержку образовавшейся суспензии после смешения растворов, последующую фильтрацию и прокалку при 450°С.

Документы, цитированные в отчете о поиске Патент 2007 года RU2306980C2

ЕР 1145762 A1, 17.10.2001
0
  • Б. В. Суворов, А. Д. Кагарлицкий, Д. Сембаев, В. С. Кудинова, Н. Р. Букейханов, Ю. Н. Солнцев, Р. Т. Кутжанов, И. С. Колодина, Т. А. Афанасьева, Е. А. Павлов, А. И. Лойко, Г. Н. Гуцалюк,
SU298163A1
JP 4271836 A, 28.09.1992
JP 2003047845 A, 18.02.2003
Материал для вторичноэлектронных эмиттеров 1977
  • Звонецкий Владимир Иванович
SU643991A2

RU 2 306 980 C2

Авторы

Волков Виктор Львович

Андрейков Евгений Иосифович

Захарова Галина Степановна

Штин Алексей Павлович

Сауль Ольга Павловна

Даты

2007-09-27Публикация

2005-11-07Подача