Изобретение относится к биотехнологии и может быть использовано в научно-исследовательских работах и при производстве биопрепаратов (вакцин, диагностикумов и других биологически активных веществ) методом глубинного культивирования.
Известны микробиологические способы определения нестерильности питательных сред для культивирования микроорганизмов, клеток животных и вирусов посредствам высева пробы на мясо-пептонный бульон (МПБ), мясо-пептонный агар (МПА) или агар Сабуро, затем оставляют несколько контрольных флаконов со средой сначала при 37°С на 3-4 суток, а затем при комнатной температуре на 10-12 суток (Справочник "Ветеринарные препараты" под ред. Д.Ф.Осидзе. - М: Колос, 1981 - С.47.) - прототип.
Однако указанный способ являются длительными и не позволяют оперативно (1 час) дать качественную оценку стерильности питательной среды, используемой при приготовлении посевного материала (при инокулировании) и для культивирования в биореакторах.
Известно, что реакции метаболизма микроорганизмов и клеток животных являются реакциями окислительно-восстановительного типа, для которых характерен перенос электронов от восстановителя к окислителю. Каждая питательная среда для глубинного культивирования микроорганизмов и клеток животных, в зависимости от ее состава, имеет определенное исходное постоянное значение окислительно-восстановительного потенциала (еН) в диапазоне от -1200 до +1200 мв, которое может быть измерено с помощью окислительно-восстановительного электрода. Электрод по своей конструкции подобен электроду для измерения концентрации водородных ионов (рН), за исключением того, что его чувствительный элемент выполнен из металла (платина, золото или серебро) или стекла с электронной проводимостью. Электродом сравнения, как и при измерении рН, является хлорсеребряный электрод.
Целью изобретения являются разработка качественного способа экспресс-определения нестерильности питательных сред для глубинного культивирования микроорганизмов, клеток животных и вирусов при изготовлении или передаче питательных сред в инокулятор и биореактор в течение 1 часа перед засевом культурой.
Указанная цель достигается тем, что определение нестерильности питательных сред проводят по изменению значения окислительно-восстановительного потенциала (еН) от установившегося в течение 1 часа постоянного значения еН для используемой питательной среды перед процессами инокулирования и культивирования микроорганизмов, клеток животных и вирусов, что приводит к снижению себестоимости производства биопрепаратов за счет исключения нестерильных операций процессов глубинного культивирования.
Способ осуществляют следующим образом. Инокуляторы и биореакторы для глубинного культивирования микроорганизмов, клеток животных и вирусов должны быть снабжены техническими средствами контроля окислительно-восстановительного потенциала (еН), включающими электрод еН и микропроцессорный аналитический блок контроля и регулирования рН и еН. Простерилизованную питательную среду (термическая или фильтрующая стерилизация) передают в предварительно простерилизованный инокулятор или биореактор и производят измерение значения еН данной среды (в мв) при перемешивании.
Если в течение 1 часа не наблюдается изменение значения еН от установившегося значения, то можно с вероятностью Р=0,9 утверждать, что питательная среда стерильна, а отклонение значения еН от установившегося значения в пределах более 10% свидетельствует о контаминировании посторонней микрофлорой питательной среды, которая подлежит повторной стерилизации, во избежание нестерильности при приготовлении инокулята и культивировании.
В качестве контроля берут не менее 8 флаконов или пробирок (статистически значимая выборка) с простерилизованной средой из инокулятора и биореактора, которые высевают на мясо-пептонный агар и оставляют на 3-4 дня в термостате при 37±0,5°С и затем проводят визуальный или микроскопический анализ на пророст контаминирующей культуры, что должно подтверждать экспресс-анализ наличия нестерильности по изменению еН от исходного начального значения для данной питательной среды
Пример 1. Для культивирования вакцинного штамма Brucella abortus 19 в биореакторах при производстве противобруцеллезной вакцины используют питательную среду на основе перевара Хоттингера.
Готовую питательную среду стерилизуют в биореакторе при температуре 127±1°С и давлении 0,08-0,09 МПа в течение 40 мин и затем охлаждают до температуры культивирования (37±0,5°С). Для биологического контроля пробы готовой питательной среды высевают на МПА или МПБ и инкубируют при 37-38°С в течение 3-4 суток.
Установившиеся значения окислительно-восстановительного потенциала данной питательной среды должны находиться в диапазоне от +300 до +400 мв с точностью ±10%. При наличии контаминации посторонней микрофлорой в течение 1 часа отклонение от установившегося значения составляет не менее ±50+60 мв. В контрольных пробах в случае нестерильности по отклонению значения еН обнаружены и микроскопически были индефицированы культуры Escerichia coli и Pseudomonas aeuruginosa в количестве 50/КОЕ в 1 мл. Результаты определения нестерильности питательных сред для культивирования Brucella abortus 19 при производстве вакцины против бруцеллеза КРС приведены в таблице 1.
Из таблицы 1 видно, что недостататочная стерилизация питательной среды в биореакторе БИОР-01 привела к возникновению нестерильности, о чем свидетельствовало изменение начального значения еН питательной среды в биореакторе без аэрации при перемешивании в течение одного часа от +350 до +280 мв. Это подтвердили 8 контрольных проб на 4 сутки (контаминация питательной среды культурами Escerichia coli и Pseudomonas aeuruginosa). Стерильность в биореакторе Bioflo-6000 подтвердилась тем, что значение еН питательной среды не изменилась в течение часа в пределах точности измеренения еН (±10%). То же подтвердили и контрольные высевы на МПА или МПБ.
Пример 2. Серьезной проблемой является очистка воздуха, подаваемого в биореакторы на аэрацию, от взвешенных в нем аэрозольных твердых и жидких частиц и, особенно, от микроорганизмов. В 1 м3 воздуха содержится до 104 микроорганизмов. В биореакторы для аэрации культуральной среды подается от 1 до 10 объемов воздуха на объем среды в час (для культур клеток животных при поверхностной аэрации) до 120 об/об·ч-1 (для микроорганизмов при барботажной аэрации в биореакторах с мешалкой). Цикл культивирования длится от 4 до 200 ч (бактерии и грибы) и до 360 ч (клетки животных и высших растений). Воздух на входе в биореактор и инокулятор должен быть стерильным. Необходимая степень очистки воздуха, поступающего на аэрацию после фильтра тонкой очистки (индивидуальный фильтр), должна составлять 99,9999999%. Результаты определения стерильности питательных сред для культивирования Pasteurella multocida шт. А-1231 при производстве вакцины против пастереллеза свиней, при недостаточной очистке и стерилизации воздуха подаваемого на аэрацию в биореактор, приведены в таблице 2.
Питательную среду готовили на основе гидролизата мяса. Полученную питательную среду стерилизовали в биореакторе при температуре 127±1°С и давлении 0,08-0,09 МПа в течение 40 мин. Из таблицы 2 видно, что недостаточная очистка воздуха, поступающего на аэрацию в биореактор АК-210, вызванная отсутствием индивидуального воздушного фильтра, при воздействии на питательную среду в течение 30 минут приводит к ее контаминации посторонней микрофлорой, о чем свидетельствует изменение еН +240 до +160 ±10% мв в течение часа при интенсивном перемешивании, что подтвердили и контрольные пробы на 4-е сутки выдержки.
Пример 3. Для глубинного культивирования в суспензии перевиваемых клеток почек сирийского хомячка (ВНК-21) при производстве противоящурной вакцины использовалась стандартная синтетическая минимальная среда Игла. Мембранную стерилизующую фильтрацию синтетической питательной среды при подаче в биореактор осуществляли на фильтрационной установке УПБ с использованием мембран "Millipor" или "Владипор" с размерами пор от 0,2 до 0,3 мкм. Результаты определения стерильности синтетической питательной среды для культивирования клеток животных приведены в таблице 3.
Из таблицы 3 следует, что прокол или разрыв стерилизующей и фильтрующей мембраны приводит к контаминации питательной среды, о чем свидетельствуют и контрольные микробиологические пробы.
Пример 4. Для глубинного культивирования первичных клеток перепелиных эмбрионов на микроносителях "Цитодекс-3" (псевдосуспензия) при производстве вирусвакцины против болезни Марека кур использовалась синтетическая среда 199, которая стерилизовалась через мембранные фильтры "Миллипор", а микроносители стерилизовались в автоклаве вместе с биореактором, заполненным дистиллированной водой. В случае, когда микроносители только ополаскивались дистиллированной водой, но не стерилизовались и помещались в питательную среду, наблюдалось изменение значения еН в течение 1 часа от +135 до +160±10% мв, что свидетельствует о контаминации питательной среды. То же было подтверждено и в микробиологическом контроле (см. табл.4).
Таким образом, с помощью контроля изменения исходного значения окислительно-восстановительного потенциала подтверждена возможность экспресс-определения нестерильности питательных сред, используемых для культивирования микроорганизмов, клеток животных и вирусов во всех случаях их возможной контаминации посторонней микрофлорой.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ ВАКЦИНЫ ПРОТИВ ЛЕПТОСПИРОЗА ЖИВОТНЫХ | 1995 |
|
RU2088258C1 |
АППАРАТ ДЛЯ КУЛЬТИВИРОВАНИЯ БИОЛОГИЧЕСКИХ ОБЪЕКТОВ | 2001 |
|
RU2223312C2 |
Способ получения нативного симбиотического препарата | 2017 |
|
RU2662949C1 |
СПОСОБ ПОЛУЧЕНИЯ СИМБИОТИЧЕСКОГО ПРЕПАРАТА НА ОСНОВЕ Escherichia coli VL-613 | 2010 |
|
RU2450051C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ВАКЦИНЫ ПРОТИВ САЛЬМОНЕЛЛЕЗА СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ И ПТИЦ | 1997 |
|
RU2124366C1 |
СПОСОБ ПОЛУЧЕНИЯ ЖИВОЙ КУЛЬТУРАЛЬНОЙ ВАКЦИНЫ ПРОТИВ ВИРУСА ГРИППА | 2009 |
|
RU2420314C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ВАКЦИНЫ ПРОТИВ САЛЬМОНЕЛЛЕЗА СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ | 1996 |
|
RU2129016C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЖИВОЙ СУХОЙ ВАКЦИНЫ ПРОТИВ РОЖИ СВИНЕЙ ИЗ ШТАММА ВР-2 | 1996 |
|
RU2085211C1 |
Питательная среда для культивирования пастерелл в промышленных биореакторах | 2022 |
|
RU2803269C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ВАКЦИН ПРОТИВ ПАСТЕРЕЛЛЕЗА ЖИВОТНЫХ И ПТИЦ | 1998 |
|
RU2129440C1 |
Изобретение относится к биотехнологии и может быть использовано в производстве биопрепаратов. Способ предусматривает подачу простерилизованной питательной среды в предварительно простерилизованный инокуляр или биореактор, снабженный техническими средствами контроля окислительно-восстановительного потенциала (еН), включающими электрод еН и микропроцессорный аналитический блок контроля и регулирования еН и рН. Измерение значений окислительно-восстановительного потенциала питательной среды при перемешивании в течение 1 часа и сравнение установившихся значений еН с уровнем установившихся значений. Вывод о нестерильности питательной среды, который делают при отклонении значения окислительно-восстановительного потенциала от установившегося значения окислительно-восстановительного потенциала питательной среды - более 10%. Изобретение позволяет исключить из процесса нестерильные стадии производства биопрепаратов. Снизить себестоимость производства. 4 табл.
Способ экспресс-определения нестерильности питательных сред для глубинного культивирования микроорганизмов, клеток животных и вирусов в биореакторах, предусматривающий подачу простерилизованной питательной среды в предварительно простерилизованный инокулятор или биореактор, снабженный техническими средствами контроля окислительно-восстановительного потенциала (еН), включающими электрод еН и микропроцессорный аналитический блок контроля и регулирования еН и рН, измерения значений окислительно-восстановительного потенциала питательной среды при перемешивании в течение 1 часа, и сравнение значений еН с уровнем установившихся значений, а вывод о нестерильности питательной среды делают при отклонении значения окислительно-восстановительного потенциала от установившегося значения окислительно-восстановительного потенциала питательной среды более чем на 10%.
Под ред | |||
Д.Ф.ОСИДЗЕ | |||
Справочник "Ветеринарные препараты" | |||
- М.: КОЛОС, 1981, с.47 | |||
МАЛАЯ ФЕРМЕНТАЦИОННАЯ УСТАНОВКА (ВАРИАНТЫ) | 1996 |
|
RU2142995C1 |
Система управления периодическим процессом биосинтеза микроорганизмов | 1972 |
|
SU488847A1 |
Способ автоматического управления периодическим процессом ферментации | 1981 |
|
SU981966A1 |
1971 |
|
SU412241A1 |
Авторы
Даты
2007-09-27—Публикация
2005-11-10—Подача