Изобретение относится к катализатору и процессу каталитического метода очистки от оксида углерода водородсодержащих газовых смесей. Водород - один из самых важных индустриальных газов и широко используется в металлургической, химической, нефтехимической и пищевой промышленности.
Водород также предполагается использовать в водородной энергетике, например, в качестве топлива для топливных элементов. В этом случае водород может быть получен в каталитическом химическом процессе, например, из различного углеводородного сырья (бензин, природный газ, спирты, диметиловый эфир и др.). Это углеводородное сырье при помощи паровой и/или кислородной конверсии и последующей паровой конверсии оксида углерода перерабатывают в водородсодержащую газовую смесь. Такая смесь обычно состоит из Н2, СО2, N2, Н2О и ˜ 1 об.% СО. Известно, что оксид углерода при концентрации больше 0.001 об.% (10 ppm) является ядом для топливного электрода. Следовательно, такую водородсодержащую газовую смесь необходимо очищать от оксида углерода перед ее подачей в топливный элемент. Одним из возможных методов очистки газовой смеси от оксида углерода является процесс селективного метанирования СО.
Такая очистка протекает по реакции:
Однако, так как в смеси присутствует и углекислый газ, то он также может подвергаться метанированию:
СО2 в смеси присутствует в значительно большей концентрации ˜20-25 об.%, чем СО, поэтому в случае протекания этой нежелательной реакции возможны большие потери водорода. Селективность процесса метанирования СО в присутствии СО2 в водородсодержащих смесях равна отношению количества СО, превратившегося в СН4, ко всему количеству метана, образовавшемуся в реакциях метанирования СО и СО2:
В настоящее время известен способ (прототип) проведения реакции селективного метанирования СО в присутствии СО2, где в качестве катализатора используется Pt-Ru катализаторы, нанесенные на оксидные носители (US 2006/0111456 A1, C07C 27/06, 25.05.2006). Одним из недостатков данных катализаторов является высокое содержание платины и рутения (до 5 мас.%). Другим недостатком является недостаточно высокая активность, при начальной концентрации 1 об.% СО, конверсия СО составляла всего 90-95%, что соответствует выходной концентрации СО 1000-500 ppm при необходимом уровне ниже 10 ppm.
Изобретение решает задачу повышения эффективности процесса селективного метанирования СО в водородсодержащих газовых смесях и снижения концентрации оксида углерода до уровня меньше 10 ppm.
Задача решается благодаря использованию более активных и селективных катализаторов на основе никеля, нанесенного на оксид церия в количестве не менее 0,1 мас.%, преимущественно, 0,1-50 мас.%.
Задача решается также способом приготовления катализатора для очистки водородсодержащих газовых смесей от оксида углерода путем метанирования оксида углерода нанесением соединений Ni, например, Ni(NO3)2, [Ni(NH3)6](NO3)2, NiSO4, NiCl2, [Ni(NH3)6]Cl3 и т.д., на соединения церия, с последующей сушкой на воздухе и дальнейшим выдерживанием при более высокой температуре в окислительной (например, на воздухе), инертной или восстановительной атмосфере. В результате образуется никельцериевая оксидная система, причем церий присутствует преимущественно в виде оксида церия, а никель в катализаторе может присутствовать в виде металла и/или оксидов никеля, и/или в виде церийсодержащих соединений никеля, причем в случае выдерживания в окислительной атмосфере преобладают оксид никеля и церийсодержащие соединения никеля, в случае выдерживания в восстановительной атмосфере преобладают никель в виде металла и церийсодержащие соединения никеля, а в случае выдерживания в инертной атмосфере никель может находиться в равной степени, как в виде металла, так и в виде оксида, а также и в виде церийсодержащих соединений никеля.
Задача решается также способом очистки водородсодержащих газовых смесей от оксида углерода путем метанирования оксида углерода на катализаторе, описанном выше. Процесс осуществляют при температуре не ниже 20°С, давлении не ниже 0.1 атм.
Очищаемая обогащенная водородом газовая смесь содержит в своем составе не менее 0,001 об.% диоксида углерода.
Очищаемая водородсодержащая газовая смесь может содержать в своем составе не менее 0,001 об.% паров воды.
Очищаемая водородсодержащая газовая смесь может содержать в своем составе не менее 0,001 об.% азота.
Изобретение иллюстрируется следующими примерами по приготовлению катализаторов определенного выше состава и примерами, описывающими результаты испытаний катализаторов в реакции селективного окисления СО в водородсодержащих газовых смесях в присутствии СО2.
Приготовление катализаторов
Пример 1. Получение никельцериевого оксидного образца с содержанием 2 мас.% Ni методом пропитки.
0,483 г соли [Ni(NH3)6](NO3)2 растворяют в 5 мл воды при температуре 80°С. 4,9 г оксида церия заливают приготовленным таким образом раствором и нагревают на водяной бане при постоянном перемешивании до полного высушивания. Полученный воздушно-сухой образец выдерживают 1.5 ч при 100°С на воздухе, затем выдерживают в окислительной (на воздухе) атмосфере при 400°С в течение 2 ч.
Содержание Ni в катализаторе составляет 2 мас.%.
Пример 2. Получение никельцериевого оксидного образца с содержанием 10 мас.% Ni методом пропитки.
2,02 г NiCl2·6H2O растворяют в 5 мл воды при температуре 80°С. 4,5 г порошка оксида церия заливают приготовленным таким образом раствором и нагревают на водяной бане при постоянном перемешивании до полного высушивания. Полученный воздушно-сухой образец выдерживают 1.5 ч при 100°С на воздухе, затем выдерживают в восстановительной атмосфере при 500°С в течение 2 ч.
Содержание Ni в катализаторе составляет 10 мас.%.
Пример 3. Получение никельцериевого оксидного образца с содержанием 20 мас.% Ni методом наосаждения.
4,93 г соли Ni(NO3)2·6H2O растворяют в 100 мл воды, содержащих 4 г мелкого порошка оксида церия. К полученному раствору при перемешивании приливают 50 мл раствора, содержащего 2 г (NH4)СО3, после чего получившийся осадок отфильтровывают и сушат на воздухе. Полученный воздушно-сухой образец выдерживают 1.5 ч при 100°С на воздухе, затем выдерживают в инертной атмосфере при 400°С в течение 2 ч.
Содержание Ni в катализаторе составляет 20 мас.%.
Пример 4. Получение никельцериевого оксидного образца с содержанием 50 мас.% Ni методом соосаждения.
12,33 г соли Ni(NO3)2·6H2O и 6,3 г соли Се(NO3)3·6Н2O растворяют в 100 мл воды. К полученному раствору при перемешивании приливают 50 мл раствора, содержащего 8 г (NH4)2СО3, после чего получившийся осадок отфильтровывают и сушат на воздухе. Полученный воздушно-сухой образец выдерживают 1.5 ч при 100°С на воздухе, затем выдерживают в восстановительной атмосфере при 600°С в течение 2 ч. Содержание Ni в катализаторе составляет 50 мас.%.
Испытание катализаторов
Процесс очистки водородсодержащих газовых смесей от оксида углерода проводят в проточном реакторе с одним слоем катализатора. Реактор представляет собой кварцевую трубку с внутренним диаметром 3 мм. Слой состоит из 0,25 г катализатора. В качестве катализаторов берут никельцериевые оксидные образцы. Объемную скорость варьируют в интервале 1000-150000 ч-1, температуру слоя катализатора в интервале 20-400°С. Реакция протекает в интервале давлений 1-10 атм. Реакционная газовая смесь имеет состав 10-99,989 об.% Н2, 0,001-50 об.% СО2, 0,01-2 об.% СО, 0-30 об.% Н2О, 0-90 об.% N2.
Пример 5.
Процесс очистки водородсодержащих газовых смесей от оксида углерода осуществляют в проточном реакторе на никельцериевом оксидном образце с содержанием 2 мас.% Ni при объемной скорости 15000 ч-1 и атмосферном давлении. Реакционная газовая смесь состоит из 1 об.% СО, 69 об.% Н2, 20 об.% СО2, 10 об.% Н2О. Полученные результаты приведены в таблице 1.
Пример 6.
Процесс, аналогичный примеру 5, проводят на никельцериевом оксидном образце с содержанием 2 мас.% Ni при объемной скорости 30000 ч-1 и атмосферном давлении. Реакционная газовая смесь состоит из 0,5 об.% СО, 69,5 об.% Н2, 20 об.% СО2, 10 об.% Н2О. Полученные результаты приведены в таблице 2.
Пример 7.
Процесс, аналогичный примеру 5, проводят на никельцериевом оксидном образце с содержанием 20 мас.% Ni при объемной скорости 15000 ч-1 и атмосферном давлении. Реакционная газовая смесь состоит из 1 об.% СО, 60 об.% Н2, 20 об.% СО2, 10 об.% Н2О, 9 об.% N2. Полученные результаты представлены в таблице 3.
Пример 8.
Процесс, аналогичный примеру 5, проводят на никельцериевом оксидном образце с содержанием 10 мас.% Ni при объемной скорости 5000 ч-1 и атмосферном давлении. Реакционная газовая смесь состоит из 1 об.% СО, 50 об.% Н2, 18 об.% CO2, 16,5 об.% H2O, 14,5 об.% N2. Полученные результаты представлены в таблице 4.
Пример 9 (Сравнительный по патенту US 2006/0111456 A1, C07C 27/06, 25.05.2006).
Процесс очистки водородсодержащих газовых смесей от оксида углерода осуществляют в проточном реакторе на Pt-Ru/Al2O3 катализаторе, содержащем 0,98 вес.% Pt и 1,02 вес.% Ru, при объемной скорости 4700 ч-1 и атмосферном давлении. Реакционная газовая смесь состоит из 1 об.% СО, 50 об.% Н2, 18 об.% СО2, 16,5 об.% Н2О, 14,5 об.% N2. Полученные результаты представлены в таблице 5.
Таким образом, как видно из примеров и таблиц, предлагаемое изобретение позволяет эффективно осуществлять процесс очистки обогащенных водородом газовых смесей до уровня содержания СО меньше 0,001 об.% (т.е. 10 ppm), при этом предлагаемые никельцериевые оксидные катализаторы существенно превышают активность и селективность Pt-Ru/Al2O3 катализатора, предложенного в прототипе.
название | год | авторы | номер документа |
---|---|---|---|
Катализатор, способ его приготовления и способ очистки водородсодержащих газовых смесей от оксида углерода | 2016 |
|
RU2629363C1 |
СПОСОБ ОЧИСТКИ ВОДОРОДСОДЕРЖАЩИХ ГАЗОВЫХ СМЕСЕЙ ОТ ОКСИДА УГЛЕРОДА (ВАРИАНТЫ) | 2006 |
|
RU2359741C2 |
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБЫ ОЧИСТКИ ВОДОРОДСОДЕРЖАЩЕГО ГАЗА ОТ МОНООКСИДА УГЛЕРОДА | 2006 |
|
RU2319542C1 |
СПОСОБ И КАТАЛИЗАТОР ГИДРИРОВАНИЯ ОКСИДОВ УГЛЕРОДА | 2006 |
|
RU2409878C2 |
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ГИДРИРОВАНИЯ ДИОКСИДА УГЛЕРОДА В МОНООКСИД УГЛЕРОДА | 2009 |
|
RU2395340C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И СПОСОБ ОЧИСТКИ ГАЗОВЫХ СМЕСЕЙ ОТ ОКСИДА УГЛЕРОДА | 2008 |
|
RU2381064C1 |
СПОСОБ ОЧИСТКИ ВОДОРОДСОДЕРЖАЩЕЙ ГАЗОВОЙ СМЕСИ ОТ ОКСИДА УГЛЕРОДА | 2002 |
|
RU2211081C1 |
Катализатор для получения синтез-газа и способ получения синтез-газа с его использованием | 2022 |
|
RU2784334C1 |
Способ получения водорода | 2022 |
|
RU2803569C1 |
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДСОДЕРЖАЩЕГО ГАЗА | 2004 |
|
RU2271333C2 |
Изобретение относится к катализатору, способу его приготовления и процессу каталитической очистки от оксида углерода обогащенных водородом газовых смесей. Описан катализатор очистки водородсодержащих газовых смесей от оксида углерода путем метанирования оксида углерода, содержащий никельцериевую оксидную систему. Описаны также способ приготовления катализатора взаимодействием соединений никеля с соединениями церия и способ очистки водородсодержащих газовых смесей от оксида углерода, который осуществляют путем селективного метанирования оксида углерода при температуре не ниже 20°С и давлении не ниже 0.1 атм, в качестве катализатора используют катализатор, описанный выше. Технический результат - эффективная очистка водородсодержащих газовых смесей до уровня содержания СО меньше 10 ppm. 3 н. и 5 з.п. ф-лы, 5 табл.
Катализатор для получения метана из оксидов углерода и водорода и способ его приготовления | 1986 |
|
SU1554962A1 |
Способ очистки водородсодержащего газа от окислов углерода | 1985 |
|
SU1298242A1 |
Катализатор для синтеза метана из окиси углерода и водорода и способ его приготовления | 1980 |
|
SU895491A1 |
Пломбировальные щипцы | 1923 |
|
SU2006A1 |
Газовый горн для нагрева бандажей | 1937 |
|
SU53693A1 |
Авторы
Даты
2008-04-27—Публикация
2006-12-18—Подача