ДУПЛЕКСНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ ДЛЯ ПРОИЗВОДСТВА ЗАПОРНОЙ И РЕГУЛИРУЮЩЕЙ АРМАТУРЫ Российский патент 2019 года по МПК C22C38/48 

Описание патента на изобретение RU2693718C2

Изобретение относится к области металлургии и касается дуплексной нержавеющей стали для производства запорной и регулирующей арматуры коррозионно-активных газовых сред с высоким содержанием сероводорода.

Известна дуплексная нержавеющая сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, азот, бор, серу, кобальт, вольфрам, медь, рутений, алюминий, кальций, железо и неизбежные примеси при следующем соотношении компонентов, мас. %: углерод ≤ 0,03, кремний ≤ 0,5, марганец ≤ 3,0, хром 24-30, никель 4,9-10, молибден 3,0-5,0, азот 0,28-0,5, бор ≤ 0,003, сера ≤ 0,01, кобальт ≤ 3,5, вольфрам ≤ 3,0, медь ≤ 2,0, рутений ≤ 0,3, алюминий ≤ 0,03, кальций ≤ 0,01, железо и неизбежные примеси остальное.

(EA 009108, C22C 38/44; C22C 38/52; C22C 38/54, опубликовано 26.10.2007)

Известна дуплексная нержавеющая сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, азот, бор, серу, кобальт, вольфрам, медь, алюминий, кальций, фосфор, титан, церий и/или лантан, ванадий, ниобий, магний, олово и железо при следующем соотношении компонентов, мас. %: углерод ≤ 0,03; кремний 0,005-1,0; марганец 0,1-7,0, хром 18,0-25,0; никель 0,5-5,0; молибден ≤ 1,5; азот 0,1-0,3; бор ≤ 0,005; сера ≤ 0,0001-0,001; кобальт ≤ 2,0; вольфрам ≤ 1,0; медь ≤ 2,0; алюминий ≤ 0,05; кальций 0,001-0,004; фосфор ≤ 0,05; титан 0,003-0,05; церий и/или лантан 0,005-0,05; ванадий 0,05-0,5; ниобий 0,01-0,15; магний ≤ 0,003; олово 0,01-0,2; железо остальное.

(ЕР 2770076, C22C 38/00, С22С 38/58, опубликовано 27.08.2014)

Известные дуплексные стали обладают достаточно высокой коррозионной стойкостью в жидких хлоридсодержащих средах в комбинации с повышенными механическими свойствами и технологичностью. Однако, в газовых средах, содержащих сероводород до - 25 об. %, известные стали склонны к коррозионному растрескиванию под напряжением, что ограничивает их применение для изготовления запорной и регулирующей арматуры.

Наиболее близкой по технической сущности является дуплексная нержавеющая сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, вольфрам, азот, кобальт, медь, ниобий, церий и/или лантан и железо, при следующем соотношении компонентов, мас. %: углерод ≤0,12; кремний ≤1,0; марганец ≤2,0; хром 20,0-35,0; никель 3,0-12,0; молибден 0,5-10,0; вольфрам 2,0-8,0; азот 0,05-0,5; кобальт 0,01-2,0; медь 0,1-5,0; ниобий ≤0,2; церий/или лантан ≤0,2%; железо остальное.

(JPH 09209087, С22С 38/00; С22С 38/58, опубликовано 12.08.1997)

Известная сталь обладает высокой прочностью и коррозионной стойкостью в водных хлоридсодержащих средах в присутствии сероводорода. Однако, в газовых средах, содержащих сероводород до 25 об. %, известная сталь также склонна к коррозионному растрескиванию, что делает невозможным ее использование для производства запорной и регулирующей арматуры.

Задачей и техническим результатом изобретения является повышение вязко-пластических характеристик дуплексной стали в сочетании с повышенной коррозионной стойкостью и стойкостью к коррозионному растрескиванию в агрессивных газовых средах сероводорода и углекислого газа.

Технический результат достигается тем, что дуплексная нержавеющая сталь для производства запорной и регулирующей арматуры содержит углерод, кремний, марганец, хром, никель, молибден, азот, медь, ниобий, церий и/или лантан, серу, фосфор, алюминий, кальций, иттрий и железо при следующем соотношении, мас. %: углерод 0,01-0,04, кремний 0,3-0,5, марганец 0,9-1,2, хром 22,5-24,0, никель 5,8-7,0, молибден 3,5-4,8, азот 0,16-0,25, медь 3,0-3,3, ниобий 0,27-0,37, церий и/или лантан 0,001-0,004, сера ≤0,004, фосфор ≤0,004, алюминий 0,01-0,02, кальций 0,001-0,004, иттрий ≤0,005%, железо остальное, при этом она имеет структуру содержащую 50-60 об. % феррита, и после электрошлакового переплава внутри ферритных зерен расположены нитриды и карбонитриды ниобия размером ≤300 нм.

Кальций и иттрий оптимизируют химический состав неметаллических включений. Алюминаты кальция сложного состава, являясь достаточно стойкими в средах, содержащих газообразный сероводород, снижают склонность стали к локальным формам коррозии.

Иттрий при концентрациях менее 0,005 мас. % при электрошлаковом переплаве образует тугоплавкие кристаллические соединения, являющиеся вынужденными центрами кристаллизации. Кроме того, иттрий в диапазоне концентраций ≤0,005 мас. % измельчает дендритное зерно, что способствует повышению вязкопластических свойств дуплексной стали. Это положительно сказывается на результатах коррозионных испытаний под напряжением. При этом содержание фосфора должно быть ограничено 0,004 мас. %. Образующиеся в указанном диапазоне концентраций неметаллические включения не являются коллекторами для коррозионно-активных компонентов газовой среды.

Содержание алюминия в стали 0,01-0,02 мас. % в сочетании с содержанием кальция 0,001-0,004 мас. % обеспечивает получение алюминатов, обладающих сферической формой и малыми размерами. При пониженной концентрации серы в металле ≤0,004 мас. % не отмечено образования сульфидных оболочек на поверхности алюминатов, которые повышают их температуру плавления.

Содержание углерода в стали 0,01-0,04 мас. % в сочетании с содержанием азота в пределах 0,16-0,22 мас. %, обеспечивает минимальные возможности формирования и как результат низкое содержание крупных карбидов типа Ме23С6, располагающихся, в основном, по границам зерен аустенита и феррита, вызывающих хрупкое разрушение при нагрузках.

Именно при заявленном соотношении углерода и азота действует нитридное упрочнение, обеспечивающее повышенный комплекс механических свойств стали.

Марганец в концентрациях 0,9-1,2 мас. % не способен вызвать образование σ-фазы, которая активно ухудшает пластические свойства стали и снижает ее коррозионную стойкость.

Содержание кремния 0,3-0,5 мас. % обусловлено присутствием в стали по изобретению алюминия, кальция и редкоземельных металлов церия и/или лантана (0,001-0,004 мас. %).

Никель в концентрациях 5,8-7,0 мас. % стабилизирует γ-область, а также повышает коррозионную стойкость стали, в частности, снижает склонность к транскристаллитному коррозионному растрескиванию.

Содержание хрома 22,5-24,0 мас. % в сочетании с оптимальным содержанием азота 0,16-0,22 мас. % позволяет предотвратить образование нежелательных крупных нитридов хрома типа Cr2N по границам зерен.

Заявленное содержание азота обеспечивает преимущественное связывание ниобия в стойкие нитриды и карбонитриды и одновременно исключает возможность образования в слитке электрошлакового переплава газовой пористости.

Содержание молибдена 3,5-4,8 мас. % в сочетании с оптимальным содержания хрома способствует уменьшению количества сложных соединений избыточной фазы (интерметаллидов), обогащенных железом, хромом, никелем, молибденом и медью.

Содержание меди 3,0-3,3 мас. % позволяет достигнуть максимума коррозионной стойкости к растрескиванию стали под напряжением. Являясь поверхностно-активным элементом, медь концентрируются на поверхности зерен, оказывает ингибирующее влияние на скорость реакций, протекающих на поверхности изделия, особенно, в зоне образования и развития трещины. Добавки меди ослабляют коррозионные процессы на поверхности стали, образуя поверхностный медьсодержащий слой, препятствуя проникновению коррозионно-активных компонентов газовой среды в металл. Кроме того, положительное влияние меди связано с образованием мелкодисперсной избыточной - фазы, концентрирующейся преимущественно в теле зерна и отвечающей за повышение прочности материала.

Изобретение можно проиллюстрировать следующим примером.

Дуплексная нержавеющая коррозионностойкая сталь для производства элементов запорной и регулирующей арматуры, устойчивая в среде сероводорода была получена по следующей технологической схеме:

- выплавка расходуемых электродов в открытой индукционной печи методом сплавления чистых шихтовых материалов с защитой металлической ванны от избыточного насыщения атмосферным азотом за счет подачи на ее поверхность аргона;

электрошлаковый переплав электродов с диффузионным раскислением шлаковой ванны алюминием в смеси с силикокальцием, при восстановлении иттрия в металл из предварительно введенного в шлак оксида иттрия;

- ковка слитка ЭШП с оптимизированной степенью укова и получением полуфабриката заготовки для изготовления элементов запорной арматуры;

- термическая обработка полуфабриката, включающая нагрев полуфабриката заготовки, выдержку его в интервале температур 1050-1070°С и последующую закалку в воду;

- механическая обработка деталей и изготовление образцов для испытаний.

Из представленных в таблице 1 данных механических испытаний следует, что дуплексная сталь по изобретению обладает повышенными вязкопластическими характеристиками, по сравнению с известной сталью.

Исследования микроструктуры (фиг. 1 и 2) образцов дуплексной стали показали наличие в структуре частиц избыточной фазы (нитриды и карбонитриды ниобия), характеризующиеся размерами ≤ 300 нм и преимущественным расположением в теле ферритных зерен.

Фиг. 1. Микроструктура стали с содержанием феррита 57%.

Фиг.2. Нитриды и карбонитриды ниобия (светлые глобули) в ферритных зернах дуплексной стали, содержащей 57% феррита (темная фаза) и 43% аустенита (светлая фаза)

Из представленных на фиг.1 и 2 результатов следует, что сталь по изобретению обладает высоким комплексом прочностных, пластических и коррозионных свойств именно за счет формирования и стабилизации дуплексной структуры (рисунок 1) и расположения мелких частиц избыточной фазы (нитридов и карбонитридов ниобия) внутри ферритных зерен (рисунок 2).

Испытания на коррозионное растрескивание под напряжением проводили в испытательном центре, в соответствии с требованиями стандарта NACE ТМ0177, по типу А: выдерживали образцы в растворе 5,0 масс. % NaCl и 0,5 масс. % СН3СООН, насыщенным H2S до 2530 ppm в течение 720 ч. с постоянно возрастающей нагрузкой на испытательной машине Н50КТ.

В результате испытания, в течение 720 ч. образцы не имели трещин и разрушений. Оценка склонности дуплексной стали по изобретению к коррозионному растрескиванию под напряжением показала ее устойчивость в газовой среде, содержащей до 25 об. % сероводорода (таблица 2).

Представленные данные показали, что дуплексная таль по изобретению обеспечивает достижение поставленного технического результата: повышение вязко-пластических характеристик дуплексной стали в сочетании с повышенной коррозионной стойкостью и стойкостью к коррозионному растрескиванию в агрессивных газовых средах сероводорода.

Похожие патенты RU2693718C2

название год авторы номер документа
СТАЛЬ ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ И ЭЛЕКТРОСВАРНЫЕ ТРУБЫ, ВЫПОЛНЕННЫЕ ИЗ НЕЕ 2013
  • Кудашов Дмитрий Викторович
  • Сомов Сергей Александрович
  • Орехов Денис Михайлович
  • Печерица Анатолий Анатольевич
  • Силин Денис Анатольевич
  • Пейганович Иван Викторович
  • Казанков Андрей Юрьевич
  • Семернин Глеб Владиславович
  • Зайцев Александр Иванович
RU2520170C1
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2009
  • Коренякин Андрей Федорович
  • Григорьев Сергей Борисович
  • Коваленко Виталий Петрович
  • Кондратьев Евгений Николаевич
  • Шахпазов Евгений Христофорович
  • Новичкова Ольга Васильевна
  • Писаревский Лев Александрович
  • Арабей Андрей Борисович
  • Антонов Владимир Георгиевич
  • Лубенский Александр Петрович
  • Кабанов Илья Викторович
RU2409697C1
ДИСПЕРСИОННО-ТВЕРДЕЮЩАЯ СТАЛЬ (ВАРИАНТЫ) И ИЗДЕЛИЕ ИЗ СТАЛИ (ВАРИАНТЫ) 2007
  • Кузнецов Юрий Васильевич
  • Лойферман Михаил Абрамович
  • Штейников Сергей Петрович
RU2383649C2
АУСТЕНИТНО-ФЕРРИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ 2019
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Муханов Евгений Львович
  • Гордюк Любовь Юрьевна
RU2700440C1
КОРРОЗИОННОСТОЙКАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЁ 2002
  • Каблов Е.Н.
  • Шалькевич А.Б.
  • Кривоногов Г.С.
  • Самченко Н.А.
  • Рыльников В.С.
  • Старова Л.Л.
RU2221895C1
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ КОТЛОВ И ПАРОВЫХ ТУРБИН, РАБОТАЮЩИХ ПРИ УЛЬТРАСВЕРХКРИТИЧЕСКИХ ПАРАМЕТРАХ ПАРА 2017
  • Скоробогатых Владимир Николаевич
  • Лубенец Владимир Платонович
  • Козлов Павел Александрович
  • Логашов Сергей Юрьевич
  • Яковлев Евгений Игоревич
RU2637844C1
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2018
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Назаратин Владимир Васильевич
  • Муханов Евгений Львович
  • Гордюк Любовь Юрьевна
RU2683173C1
ХЛАДОСТОЙКАЯ СТАЛЬ 2017
  • Марков Сергей Иванович
  • Дуб Владимир Семенович
  • Баликоев Алан Георгиевич
  • Орлов Виктор Валерьевич
  • Косырев Константин Львович
  • Лебедев Андрей Геннадьевич
  • Петин Михаил Михайлович
RU2648426C1
ВЫСОКОПРОЧНАЯ ПОРОШКОВАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2020
  • Каблов Евгений Николаевич
  • Неруш Святослав Васильевич
  • Тонышева Ольга Александровна
  • Мазалов Павел Борисович
  • Крылов Сергей Алексеевич
  • Богачев Игорь Александрович
RU2751064C1
Экономнолегированная хладостойкая высокопрочная сталь 2020
  • Мирзоян Генрих Сергеевич
  • Володин Алексей Михайлович
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
RU2746599C1

Иллюстрации к изобретению RU 2 693 718 C2

Реферат патента 2019 года ДУПЛЕКСНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ ДЛЯ ПРОИЗВОДСТВА ЗАПОРНОЙ И РЕГУЛИРУЮЩЕЙ АРМАТУРЫ

Изобретение относится к области металлургии, а именно к дуплексной нержавеющей стали, используемой для производства запорной и регулирующей арматуры коррозионно-активных газовых сред с высоким содержанием сероводорода. Сталь содержит компоненты при следующем соотношении, мас.%: углерод 0,01-0,04, кремний 0,3-0,5, марганец 0,9-1,2, хром 22,5-24,0, никель 5,8-7,0, молибден 3,5-4,8, азот 0,16-0,25, медь 3,0-3,3, ниобий 0,27-0,37, церий и/или лантан 0,001-0,004, сера ≤0,004, фосфор ≤0,004, алюминий 0,01-0,02, кальций 0,001-0,004, иттрий ≤0,005, железо – остальное. После электрошлакового переплава она имеет структуру, содержащую 50-60 об.% феррита, внутри ферритных зерен которого расположены нитриды и карбонитриды ниобия размером ≤300 нм. Обеспечивается повышение вязко-пластических характеристик стали в сочетании с повышенной коррозионной стойкостью и стойкостью к коррозионному растрескиванию в агрессивных газовых средах сероводорода. 2 табл., 2 ил.

Формула изобретения RU 2 693 718 C2

Дуплексная нержавеющая сталь для производства запорной и регулирующей арматуры, содержащая углерод, кремний, марганец, хром, никель, молибден, азот, медь, ниобий, церий и/или лантан, серу, фосфор, алюминий, кальций, иттрий и железо, отличающаяся тем, что она содержит компоненты при следующем соотношении, мас.%: углерод 0,01-0,04, кремний 0,3-0,5, марганец 0,9-1,2, хром 22,5-24,0, никель 5,8-7,0, молибден 3,5-4,8, азот 0,16-0,25, медь 3,0-3,3, ниобий 0,27-0,37, церий и/или лантан 0,001-0,004, сера ≤0,004, фосфор ≤0,004, алюминий 0,01-0,02, кальций 0,001-0,004, иттрий ≤0,005, железо - остальное, при этом после электрошлакового переплава она имеет структуру, содержащую 50-60 об. % феррита, внутри ферритных зерен которого расположены нитриды и карбонитриды ниобия размером ≤300 нм.

Документы, цитированные в отчете о поиске Патент 2019 года RU2693718C2

US 5849111 A, 15.12.1998
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2000
  • Петров Ю.Н.
  • Хомякова Н.Ф.
  • Мурунов А.И.
  • Таволжанов А.Н.
  • Левин В.Г.
RU2184793C2
EP 1715073 B1, 22.10.2014
EP 2003216 A1, 17.12.2008
Видоизменение прибора для получения стереоскопических впечатлений от двух изображений различного масштаба 1919
  • Кауфман А.К.
SU54A1
US 9637813 B2, 02.05.2017
Способ и система для улучшения долговечности устройства аккумулирования электроэнергии для транспортного средства с системой автоматического пуска и останова 2018
  • Леоне, Томас Г.
  • Миллер, Кеннет Джеймс
  • Радемахер, Эрик
  • Гибсон, Алекс О`Коннор
RU2684973C1
Способ диагностирования гидромеханической коробки передач транспортного средства 1987
  • Вовк Александр Викторович
  • Винарский Анатолий Антонович
  • Бунос Анатолий Адамович
  • Геращенко Василий Васильевич
SU1495150A1
US 4141762 A, 27.02.1979
Пропиточный состав для восстановления герметичности отливок из алюминиевых сплавов и способ его приготовления 1987
  • Ушерович Борис Иосифович
  • Кругляк Владимир Филиппович
  • Лунева Надежда Аксентьевна
  • Винюков Юрий Георгиевич
  • Вершинский Георгий Оттович
SU1650320A1

RU 2 693 718 C2

Авторы

Левков Леонид Яковлевич

Уткина Ксения Николаевна

Шурыгин Дмитрий Александрович

Баликоев Алан Георгиевич

Ефимов Виктор Михайлович

Калугин Дмитрий Александрович

Марков Сергей Иванович

Орлов Сергей Витальевич

Толстых Дмитрий Сергеевич

Даты

2019-07-04Публикация

2017-06-16Подача