СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООЧИЩЕННЫХ ТВЕРДЫХ НЕФТЯНЫХ ПАРАФИНОВ Российский патент 2008 года по МПК C10G45/04 

Описание патента на изобретение RU2333935C1

Изобретение относится к процессам нефтепереработки, в частности к процессам и катализаторам получения нефтяных парафинов высокой степени очистки.

Твердые нефтяные парафины представляют собой кристаллические вещества, получаемые из дистиллятного сырья в масляном производстве.

По степени очистки товарные твердые парафины подразделяются на неочищенные, очищенные и высокоочищенные [Рудин М.Г., Драбкин А.Е. Краткий справочник нефтепереработчика. М.: Химия, 1980, стр.140-141]. Перечень и характеристики основных показателей качества твердых парафинов различной степени очистки приведены в табл.1.

Неочищенные парафины (парафин-сырец или обезмасленый гач) получают путем обезмасливания гачей или кристаллизацией твердых парафинов без применения растворителей [Патенты РФ №2283340, БИ №25, 2006 г., №2005769, БИ №1, 1994 г., №2105093, опубликовано 1998.02.20].

Неочищенные парафины подвергают облагораживанию с целью удаления нестабильных, красящих и обладающих запахом веществ с применением кислотно-щелочной, адсорбционной или каталитической гидрогенизационной очистки.

При применении кислотно-щелочной или адсорбционной очистки удается получать только технические парафины (марки Т и С, табл.1). [Переверзев А.Н., Богданов Н.Ф., Рощин Ю.Н. Производство парафинов. М.: Химия, 1973, стр.200-204].

Таблица 1.Основные показатели качества твердых нефтяных парафинов различной глубины очистки.Показатели/маркинеочищенныеочищенныевысокоочищенныепищевыесвечныеHcНвТСГОСТ 23683-89FDA USAIKEA IOS-МАТ-0049Цвет, мм, не менеене нормированопо стеклу №2 70по стеклу №1 270не нормированоЦвет, условные марки, не болеене нормировано31,51,5Устойчивость (стабильность) цвета, сутки, не менеене нормировано4не определяетсяне менее 7не нормированоСодержание серы, мас.%не определяется0,15отс.0,05отсутствиеСодержание бенз-α-пирена, мас.%не нормированоотсутствиеотсутствиеСодержание, ppm- бензолане нормированоотс.0,050,05- толуолане нормированоотс.22

В случае переработки даже малосернистых высокопарафинистых нефтей получение пищевых парафинов, соответствующих требованиям ГОСТ 23683-89, достигается при последовательном применении кислотно-щелочной и адсорбционной очистки [Пат. РФ №2049805, БИ №34 от 10.12.95], но сопровождается значительными отходами, что делает применение этих способов экологически не привлекательными, и не обеспечивает получение парафинов, отвечающим требованиям зарубежных стандартов [PDA USA, IKEA IOS-MAT-0049] по цвету и стабильности цвета. При переработке сернистых нефтей получаемые продукты не отвечают требованиям отечественных [ГОСТ -23683-89] и зарубежных стандартов по цвету и содержанию серы.

Показатели качества парафинов «цвет» и «стабильность цвета» зависят от содержания в них соединений азота, интенсивность цвета которых возрастает при нагревании и/или при облучении ультрафиолетовыми лучами [Каррер П. Курс органической химии. Л.: Гостопхимиздат, 1960 г., стр.555-577; Чертков Я.Б. Неуглеводородные соединения в нефтепродуктах. М.: Химия, 1964 г. стр.81-89].

В твердых парафинах азот присутствует как в виде пиридиновых и хинолиновых оснований, амидов, производных пиррола и карбазола, так и в виде конденсированных молекул, содержащих по два разнородных гетероатома [Богомолов А.И., Гайле А.А., Громова В.В. и др. Химия нефти и газа. - Л.: Химия, 1981 г. стр.191-205].

Известно, что азоторганические соединения гидрируются значительно труднее сероорганических. При одинаковом строении устойчивость относительно гидрирования возрастает в ряду: сероорганические < кислородоорганические < азоторганические. Легче всего гидрируются соединения, содержащие азот в аминогруппах (С6Н5-CH2NH2), связанных с линейными радикалами. Соединения, содержащие аминогруппу, связанную с ароматическим кольцом (С6Н5-NH2), гидрируются труднее. Труднее всего удаляется азот из соединений, содержащих его в циклических структурах [Богомолов А.И., Гайле А.А., Громова В.В. и др. Химия нефти и газа. - Л.: Химия, 1981 г. стр.298-300].

Отрицательное влияние на стабильность цвета твердого парафина оказывает также присутствие в его составе ненасыщенных углеводородов, обладающих склонностью к поликонденсации.

Очевидно, что для получения из парафина-сырца высокоощищенных парафинов, соответствующих требованиям современных стандартов по цвету, запаху и содержанию серы, необходимо создать условия, обеспечивающие осуществление реакций гидрирования ненасыщенных углеводородов, превращения азот- и сероорганических соединений. Это можно обеспечить путем каталитического гидрооблагораживания неочищенных парафинов [Технология парафинов и масел. Сборник трудов ГрозНИИ, 1985 г., стр.57-60; Орочко Д.И., Сулимов А.Д., Осипов Л.Н. Гидрогенизационные процессы в нефтепереработке. М.: Химия, 1971 г., стр.235-23].

В процессе каталитического гидрооблагораживания происходят реакции гидрирования непредельных, полициклических ароматических углеводородов, превращения гетероорганических соединений (содержащих серу, азот, кислород) [Курганов В.М. и др. Гидроочистка нефтепродуктов на алюмоникельмолибденовом катализаторе. М.: ЦНИИТЭнефтехим, 1975 г., стр.79-80].

Реакции гидрирования непредельных углеводородов и превращения сероорганических соединений протекают на оксидных катализаторах при давлении 36-40 кгс/см2, температуре 200-360°С, объемной скорости подачи сырья 0,5-1,0 час-1 [Переверзев А.Н., Богданов Н.Ф., Рощин Ю.Н. Производство парафинов. М.: Химия, 1973, стр.205-210; Скибенко А.П. Нефтепереработка и нефтехимия, 1972, №10, стр.11-13].

Характерной особенностью процесса каталитического гидрооблагораживания твердых парафинов является необходимость поддержания умеренного температурного режима, позволяющего избежать протекания реакций разрыва связей -С-С-, приводящих к разложению сырья и преждевременному коксованию катализатора [Солецкий О.И. и др. Химия и технология топлив и масел, 1973, №12, стр.1-5].

В связи с этим в ряде случаев для достижения нужной глубины очистки процесс ведут при давлении водорода 100-300 кгс/см2. При снижении давления ниже 100 кгс/см2 степень очистки значительно ухудшается [Авт. свид. СССР №87308, БИ №3, 79, 1951 г.].

Условия процесса гидрооблагораживания, характер и глубина протекающих реакций в значительной степени зависят от применяемого катализатора.

Для гидрооблагораживания парафинов используются преимущественно оксидные алюмокобальтмолибденовые [патент США 2956001, 1960 г., патент США №2985579, 1961 г.] или алюмоникельмолибденовые катализаторы [патент ГДР №40819, 1965 г., Брит. патент №320921, 1929 г.]. Известно применение никелевых катализаторов на окиси алюминия или силикагеле [Брит. патент №851969, 1960, патент США №3052662, 1962 г., Брит. патент №367939, 1932 г.] и оксидных никельвольфрамжелезных [Брит. патент №911813, 1962 г.].

Получение парафинов высокой степени очистки на этих катализаторах достигается при температуре 340-400°С, давлении около 300 кгс/см2, объемной скорости подачи сырья 0,5 час-1, кратности циркуляции ВСГ - 750-800 нм33 сырья.

Организация процесса, протекающего при давлении 300 кгс/см2, сопровождается значительными капитальными затратами.

Применение платиносодержащего катализатора позволило получать продукты требуемого качества при давлении 60-100 кгс/см2 [Патент РФ №2280675, БИ 321 2006 г., патент РФ №2276184, БИ №13 2006 г.]. Недостатком этого способа является существенное ограничение по содержанию серы в сырье. Практически предлагаемый способ является второй ступенью гидроочистки парафина. Затраты на организацию процесса, осуществляемого при указанных давлениях, ниже, чем у предыдущего, но все равно значительны.

Действующие установки гидрооблагораживания парафинов могут эксплуатироваться при давлениях не выше 40 кгс/см2. При этом давлении в результате гидроочистки парафина-сырца, выделенного из гидроочищенных рафинатов дистиллятных масел, на алюмокобальтмолибденовом катализаторе при температуре 280-320°С, объемной скорости подачи сырья 0,5-1,0 час-1 и кратности водорода к сырью 400-700 нм33 достигается получение продуктов, соответствующих требованиям стандартов РФ на пищевые парафины. Но длительность межрегенерационного цикла катализатора в этом случае составляет не более 3 месяцев [Гончаренко А.Д., Леонтьев А.С., Переверзев А.Н. и др. Современное состояние процессов очистки парафинов. М.: ЦНИИТЭнефтехим, 1978 г., стр.7-12], что отрицательно сказывается на экономике процесса.

Увеличение длительности межрегенерационного цикла приводит к ухудшению цвета получаемых продуктов.

Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому техническому решению является способ получения твердых пищевых парафинов путем их обработки в среде водорода при повышенных давлении и температуре в присутствии окисносульфидного катализаторами 1715827, 29.02.98, БИ №8].

Целью предлагаемого технического решения является способ получения высокоочищенных твердых нефтяных парафинов.

Поставленная цель достигается путем использования способа получения высокоочищенных твердых нефтяных парафинов путем обработки нефтяных фракций в среде водорода при повышенных давлении и температуре в присутствии системы алюмооксидных катализаторов, обладающих функциями изменения углеводородного состава и очистки от элементоорганических соединений, при условии что в качестве нефтяной фракции используют обезмасленый гач, в качестве катализатора очистки от элементоорганических соединений предпочтительно используется катализатор, полученный путем последовательного смешения гидроксида алюминия псевдобемитного типа с неорганической кислотой до получения однородной массы с рН 4-5, с солями никеля и/или кобальта и молибдена и/или вольфрама в количествах, необходимых для содержания в готовом продукте оксида молибдена и/или вольфрама 12,0-20,0 мас.%, оксида никеля и/или кобальта 3,0-5,0 мас.%, с последующим упариванием полученной массы до потерь при прокаливании 53-56 мас.%, формовкой ее в виде экструдатов, сушкой экструдатов до потерь при прокаливании не более 30 мас.% и их прокалкой до потерь при прокаливании менее 3 мас.%, в системе алюмооксидных катализаторов первым по ходу сырья загружают катализатор защитного слоя, затем катализатор очистки от элементоорганических соединений в количестве 40-70% от суммарной массы катализаторов очистки от элементорганических соединений и изменения углеводородного состава сырья, эксплуатацию каталитической системы проводят при температуре 280-360°С, давлении 30-40 ати, соотношении ВСГ : сырье 800-1200 нм33, объемной скорости подачи сырья 0,4÷1,0 час-1.

Отличительным признаком предлагаемого изобретения является то, что в качестве нефтяной фракции используют обезмасленый гач, в качестве катализатора очистки от элементоорганических соединений предпочтительно используется катализатор, полученный путем последовательного смешения гидроксида алюминия псевдобемитного типа с неорганической кислотой до получения однородной массы с рН 4-5, с солями никеля и/или кобальта и молибдена и/или вольфрама в количествах, необходимых для содержания в готовом продукте оксида молибдена и/или вольфрама 12,0-20,0 мас.%, оксида никеля и/или кобальта 3,0-5,0 мас.%, с последующим упариванием полученной массы до потерь при прокаливании 53-56 мас.%, формовкой ее в виде экструдатов, сушкой экструдатов до потерь при прокаливании не более 30 мас.% и их прокалкой до потерь при прокаливании менее 3 мас.%, в системе алюмооксидных катализаторов первым по ходу сырья загружают катализатор защитного слоя, затем катализатор очистки от элементоорганических соединений в количестве 40-70% от суммарной массы катализаторов очистки от элементорганических соединений и изменения углеводородного состава сырья, эксплуатацию каталитической системы проводят при температуре 280-360°С, давлении 30-40 ати, соотношении ВСГ : сырье 800-1200 нм33, объемной скорости подачи сырья 0,4÷1,0 час-1.

Предлагаемый способ получения высокоочищенных твердых нефтяных парафинов осуществляют следующим образом.

В реактор последовательно снизу вверх загружают каталитическую систему, состоящую из:

- катализатора гидрирования ненасыщенных и полициклических углеводородов, изготовленного в соответствии с описанием патента РФ №2266786 в количестве 30-60% от суммарной массы катализаторов очистки от элементорганических соединений и изменения углеводородного состава сырья,

- катализатора очистки от элементоорганических соединений, полученного путем последовательного смешения гидроокиси алюминия псевдобемитного типа с неорганической кислотой до получения однородной массы с рН 4-5, с солями никеля и/или кобальта и молибдена и/или вольфрама в количествах, необходимых для содержания в готовом продукте оксида молибдена и/или вольфрама 12,0-20,0 мас.%, оксида никеля и/или кобальта 3,0-5,0 мас.%, с последующим упариванием полученной массы до потерь при прокаливании (ППП) 53-56 мас.%, формовкой ее в виде экструдатов, сушкой экструдатов до ППП не более 30 мас.% и их прокалкой до ППП менее 3 мас.% в количестве 40-70% от от суммарной массы катализаторов очистки от элементорганических соединений и изменения углеводородного состава сырья,

- катализатор защитного слоя, изготовленный в соответствии с описанием патента РФ №2245896 в количестве 10% от всей массы каталитической системы.

Катализаторы в реакторе сушат в токе инертного или водородсодержащего газа при температуре 120-160°С. Активацию катализатора проводят при циркуляции водородсодержащего газа с содержанием сероводорода на уровне 0,3-30 ppmw при температуре 160-400°С.

На подготовленную описанным выше способом каталитическую систему подают сырье (сверху вниз), представляющее собой обезмасленый гач.

Процесс ведут при следующих технологических параметрах:

- температура на входе в реактор - 280-360°С,

- давление - не менее 3,0 МПа,

- соотношение ВСГ : сырье - 800-1200 нм33,

- объемная скорость подачи сырья - 0,4-1,0 час-1.

Введение в состав каталитической системы катализатора очистки от элементорганических соединений, приготовленного в соответствии с формулой предлагаемого изобретения, обеспечивает максимальное превращение содержащихся в сырье азот- и сероорганических соединений в углеводороды, аммиак и сероводород.

Присутствие в составе каталитической системы катализатора гидрирования ненасыщенных и полициклических углеводородов обеспечивает дегидрирование ненасыщенных и полициклических углеводородов, образующихся в результате превращения на первом слое катализатора элементоорганических соединений.

Для осуществления реакций, положенных в основу осуществления предлагаемого способа получения высокоочищенных твердых парафинов, необходимо присутствие в зоне реакции достаточного количества водорода. Для максимального использования потенциала каталитической системы количество водорода, подаваемого в зону реакции, должно быть избыточным по сравнению со стехиометрическим.

Использование описанной выше каталитической системы при заданных технологических параметрах позволяет осуществлять реакции превращения содержащихся в сырье элементоорганических соединений (в том числе серо- и азотсодержащих) и гидрирования ненасыщенных и полициклических углеводородов на глубину, достаточную для получения продукта, соответствующего требованиям современных стандартов к твердым нефтяным парафинам.

Комплекс условий, указанных в формуле предлагаемого изобретения, позволяет при переработке парафина-сырца получать высокоочищенные твердые нефтяные парафины, удовлетворяющие требованиям отечественных и зарубежных стандартов.

Осуществление процесса гидрооблагораживания парафина-сырца по предложенному способу неизвестно.

Таким образом, данное техническое решение соответствует критериям «новизна» и «существенное отличие».

Примеры.

При проведении испытаний предложенного технического решения в качестве катализатора защитного слоя используется катализатор, выпускаемый в промышленности под маркой РК-012 по ТУ 38.1011381-98, в качестве катализатора гидрирования ненасыщенных и полициклических углеводородов, катализатор, выпускаемый в промышленности под маркой РК-242 по ТУ 2177-011-40431454-2005 в соответствии с описанием патента РФ №2266786.

В качестве катализатора очистки от элементоорганических соединений используются образцы, перечень и характеристики которых приведены в табл.2.

Пример синтеза катализатора превращения элементоорганических соединений.

Образец 1.

В месильную машину загружают гидроксид алюминия псевдобемитного типа в пересчете на Al2О3 25 кг, в том числе 15 кг гидроксида алюминия холодного осаждения и 10 кг гидроксида алюминия горячего осаждения с ППП, равным 75,8 мас.%, перемешивают в течение 1 часа, в полученную массу при постоянном перемешивании добавляют азотную кислоту в количестве, необходимом для получения однородной массы с рН<4. В полученную массу добавляют при постоянном перемешивании последовательно соли кобальта азотнокислого и аммония молибденовокислого в количествах, необходимых для содержания в готовом продукте оксида кобальта 3,0 мас.%, оксида молибдена 12,0 мас.%.

Таблица 2.Перечень образцов катализатора превращения элементорганических соединений, используемых при реализации предлагаемого изобретения.Образец катализатораСоотношение Al(ОН)3 хол. и гор. осаждениярН «лепешки» Al(ОН)3Содержание, мас.%ППП, мас.%MoO3 (WO3)NiO (CoO)катализаторной массыэкструдатовдо прокаливанияпосле прокаливанияобр.11,5:1412,0 МоО33,0 СоО53303,0обр.22,0:1515,0 МоО35,0 NiO56292,8обр.31,5:1420,0 WO33,0 NiO53303,0обр.41,5:1410,0 МоО3 + 10,0 WO32,0 CoO + 3,0 NiO53303,0обр.51,0:1611,0 МоО36,0 NiO52323,0обр.62,5:1321,0 МоО32,0 NiO57323.2

Полученную массу перемешивают при одновременном упаривании до достижения потерь при прокаливании (ППП) 53 мас.%, формуют в виде экструдатов и сушат до достижения ППП 30 мас.%. Высушенные экструдаты направляют на прокалку. Прокалку проводят при температуре 550°С до достижения ППП 3 мас.%.

Образцы 2-6 готовят в той же последовательности, что и образец 1, но вместо азотнокислого кобальта используют азотнокислый никель (образцы 2, 5, 6) или уксуснокислый никель (образец 3). При приготовлении образца 2 вместо азотной кислоты используют фосфорную, образца 3 - вместо аммония молибденовокислого используют аммоний вольфрамовокислый. При приготовлении образца 4 используют аммоний молибденовокислый, аммоний вольфрамовокислый, азотнокислый никель и азотнокислый кобальт.

Примеры использования катализаторов в предлагаемой технологии.

С использованием описанных выше образцов катализаторов было составлено несколько каталитических систем, состав которых приведен в табл.3.

В качестве сырья использован обезмасленый гач (далее парафин-сырец) с характеристиками, приведенными в табл.4.

Таблица 3Перечень каталитических систем, используемых при реализации предлагаемого изобретения.Каталитическая система №Состав каталитической системы, мас.%Используемый образец катализатора превращения элементоорганических соединенийзащитный слойкатализатор превращения элементоорганических соединенийкатализатор гидрирования ненасыщенных и ароматических углеводородов1103654обр.12106327обр.23566,528,5обр.34103654обр.45566,528,5обр.56566,528,5обр.67102763обр.28107218обр.2

Таблица 4.Характеристика сырья.№ ппНаименование показателейСырье - парафин сырец1Плотность при 20°С, г/см30,8112Массовая доля масла, %0.453Фракционный состав, °С- нк392- 5% выкипает406- 10% выкипает408- 50% выкипает429- 95%выкипает492- кк5044Содержание серы, мас.%0,00385Содержание азота, мас.%0,0130

Условия реализации примеров в соответствии с формулой предлагаемого изобретения приведены в табл.5.

Таблица 5.Условия реализации примеров в соответствии с формулой предлагаемого изобретения.Пример, №Каталитическая система, №Давление, МПаТемпература, °ССоотношение ВСГ: сырье, нм33Об. скорость, ч-1Пример 113,028012000,4Пример 223,03608001,0Пример 333,030010000,8Пример 444,03608001,0Пример 553,030010000,8Пример 663,030010000,8Пример 773,030010000,8Пример 883,030010000,8Пример 925,02707000,8Пример 1022,030010000,3Пример 1123,030012001,1Пример 1223,037010001,0Пример 13 (прототип)по прототипу*3,0300200**1,0* в состав каталитической системы входят катализаторы защитного слоя, гидрирования непредельных углеводородов и гидрогенолиза элементорганических соединений, приготовленные в соответствии с формулой прототипа** соотношение ВСГ : сырье рассчитано в соответствии с формулой прототипа.

Результаты, полученные при реализации примеров 1-13, приведены в табл.6.

Таблица 6.Результаты реализации примеров в соответствии с формулой предполагаемого изобретения.Пример №Выход, мас.%Содержание, мас.%Характеристики цветасерыазотанепредельныхцвет (усл. марки)стабильность (сутки)Пример 199отс.0,0045отс.менее 1более 7Пример 299отс.0,0046отс.1,0более 7Пример 399отс.0,0043отс.1,5более 7Пример 499отс.0,0042отс.менее 1более 7Пример 5990,00810,08120,522Пример 6990,00750,07560,623Пример 7990,00820,08000,522Пример 8990,00770,07860,522Пример 9990,00900,08961,231Пример 1099отс.0,0043отс.менее 1более 7Пример 11990,00810,00920,723Пример 1290отс.0,0042отс.1,06Пример 13 (прототип)990,00150,0100отс.32

Основным показателем эффективности предлагаемого способа получения твердых парафинов является получение продукта с содержанием азотсодержащих соединений и непредельных углеводородов, обеспечивающих цвет товарного парафина не выше 1,5 и стабильность по цвету не менее 7 суток. Не менее важным показателем является отсутствие в получаемом продукте серы. Важным показателем эффективности процесса при выполнении вышеперечисленных является также выход целевого продукта.

Видно, что примеры, выполненные в соответствии с формулой предлагаемого изобретения (примеры 1-4), превосходят результаты испытаний, выполненных по условиям прототипа (пример 13).

Несоблюдение состава каталитической системы (примеры 5-7), технологических параметров процесса (примеры 8, 9, 11), оговоренных в формуле предлагаемого изобретения, также не позволяют достигнуть требуемых показателей. Осуществление способа при объемной скорости подачи сырья менее оговоренной в формуле предлагаемого изобретения (пример 10) приведет к снижению производительности установки без улучшения качества получаемого продукта, что нежелательно.

Похожие патенты RU2333935C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООЧИЩЕННЫХ ТВЕРДЫХ НЕФТЯНЫХ ПАРАФИНОВ 2014
  • Коваленко Алексей Николаевич
  • Карпов Николай Владимирович
  • Васильев Герман Григорьевич
  • Вахромов Николай Николаевич
  • Николаев Сергей Иванович
  • Филин Сергей Александрович
  • Железнов Михаил Владимирович
  • Смирнов Владимир Константинович
  • Ирисова Капитолина Николаевна
  • Талисман Елена Львовна
RU2549558C1
СПОСОБ ПОЛУЧЕНИЯ МАЛОСЕРНИСТЫХ НЕФТЯНЫХ ФРАКЦИЙ 2003
  • Смирнов В.К.
  • Ирисова К.Н.
  • Талисман Е.Л.
  • Бабаева И.А.
RU2245896C1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ГИДРООБЛАГОРАЖИВАНИЯ НЕФТЯНОГО СЫРЬЯ 2001
  • Смирнов В.К.
  • Ирисова К.Н.
  • Талисман Е.Л.
  • Чванова Е.С.
  • Асеева А.П.
RU2183505C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИТИЧЕСКОЙ СИСТЕМЫ ГИДРООБЛАГОРАЖИВАНИЯ УГЛЕВОДОРОДНОГО СЫРЬЯ 2004
  • Смирнов Владимир Константинович
  • Ирисова Капитолина Николаевна
  • Талисман Елена Львовна
RU2271861C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ГИДРОКРЕКИНГА НЕФТЯНОГО СЫРЬЯ 2006
  • Ирисова Капитолина Николаевна
  • Смирнов Владимир Константинович
  • Поняткова Зоя Юрьевна
  • Чванова Екатерина Сергеевна
  • Талисман Елена Львовна
RU2310509C1
ШАРИКОВЫЙ КАТАЛИЗАТОР ДЛЯ ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2011
  • Красий Борис Васильевич
  • Кустова Тамара Сергеевна
  • Пукшанский Леонид Исидорович
  • Сорокин Илья Иванович
RU2472583C1
СПОСОБ ПОЛУЧЕНИЯ БАЗОВОГО СМАЗОЧНОГО МАСЛА ИЗ ПАРАФИНОВОГО ГАЧА 2002
  • Бенар Жерар
  • Дюпре Эрик
  • Ван Вен Йоханнес Антониус Роберт
RU2280064C2
СПОСОБ ПОЛУЧЕНИЯ БАЗОВОЙ ОСНОВЫ ДЛЯ НЕФТЯНЫХ МАСЕЛ 2006
  • Резниченко Ирина Дмитриевна
  • Бочаров Александр Петрович
  • Левина Любовь Александровна
  • Школьников Виктор Маркович
  • Крайденков Александр Петрович
  • Фрейман Леонид Ленэрович
RU2310681C1
СПОСОБ ГИДРОГЕНИЗАЦИОННОЙ ПЕРЕРАБОТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ 2017
  • Виноградова Наталья Яковлевна
  • Никульшин Павел Анатольевич
  • Алексеенко Людмила Николаевна
  • Гусева Алёна Игоревна
  • Наранов Евгений Русланович
  • Болдушевский Роман Эдуардович
  • Малкина Елена Евгеньевна
  • Овчинников Кирилл Александрович
RU2680386C1
Катализатор и способ гидрооблагораживания дизельных дистиллятов 2015
  • Бухтиярова Галина Александровна
  • Власова Евгения Николаевна
  • Александров Павел Васильевич
  • Токтарев Александр Викторович
  • Алешина Галина Ивановна
  • Носков Александр Степанович
  • Клейменов Андрей Владимирович
  • Кондрашев Дмитрий Олегович
  • Мирошкина Валентина Дмитриевна
  • Русецкая Кристина Андреевна
  • Кузнецов Сергей Евгеньевич
RU2607925C1

Реферат патента 2008 года СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООЧИЩЕННЫХ ТВЕРДЫХ НЕФТЯНЫХ ПАРАФИНОВ

Изобретение относится к способу получения высокоочищенных твердых нефтяных парафинов путем обработки нефтяных фракций в среде водорода при повышенных давлении и температуре в присутствии системы алюмооксидных катализаторов, обладающих функциями изменения углеводородного состава и очистки от элементоорганических соединений, в качестве нефтяной фракции используют обезмасленый гач, в качестве катализатора очистки от элементоорганических соединений предпочтительно используется катализатор, полученный путем последовательного смешения гидроксида алюминия псевдобемитного типа с неорганической кислотой до получения однородной массы с рН 4-5, с солями никеля и/или кобальта и молибдена и/или вольфрама в количествах, необходимых для содержания в готовом продукте оксида молибдена и/или вольфрама 12,0-20,0 мас.%, оксида никеля и/или кобальта 3,0-5,0 мас.%, с последующим упариванием полученной массы до потерь при прокаливании 53-56% мас.%, формовкой ее в виде экструдатов, сушкой экструдатов до потерь при прокаливании не более 30 мас.% и их прокалкой до потерь при прокаливании менее 3 мас.%.

2 з.п. ф-лы, 6 табл.

Формула изобретения RU 2 333 935 C1

1. Способ получения высокоочищенных твердых нефтяных парафинов путем обработки нефтяных фракций в среде водорода при повышенных давлении и температуре в присутствии системы алюмооксидных катализаторов, обладающих функциями изменения углеводородного состава и очистки от элементоорганических соединений, отличающийся тем, что в качестве нефтяной фракции используют обезмасленый гач, в качестве катализатора очистки от элементоорганических соединений предпочтительно используется катализатор, полученный путем последовательного смешения гидроксида алюминия псевдобемитного типа с неорганической кислотой до получения однородной массы с рН 4÷5, с солями никеля и/или кобальта и молибдена и/или вольфрама в количествах, необходимых для содержания в готовом продукте оксида молибдена и/или вольфрама 12,0-20,0 мас.%, оксида никеля и/или кобальта 3,0-5,0 мас.%, с последующим упариванием полученной массы до потерь при прокаливании 53-56 мас.%, формовкой ее в виде экструдатов, сушкой экструдатов до потерь при прокаливании не более 30 мас.% и их прокалкой до потерь при прокаливании менее 3 мас.%.2. Способ по п.1, отличающийся тем, что первым по ходу сырья загружают катализатор защитного слоя, затем катализатор очистки от элементоорганических соединений в количестве 40÷70% от суммарной массы катализаторов очистки от элементоорганических соединений и изменения углеводородного состава сырья.3. Способ по п.1, отличающийся тем, что эксплуатацию каталитической системы проводят при температуре 280-360°С, давлении 30-40 ати, соотношении ВСГ: сырье 800÷1200 нм33, объемной скорости подачи сырья 0,4÷1,0 ч-1.

Документы, цитированные в отчете о поиске Патент 2008 года RU2333935C1

Способ получения твердых пищевых парафинов 1990
  • Есипко Евгений Алексеевич
  • Прокофьев Виктор Петрович
SU1715827A1
СПОСОБ ПОЛУЧЕНИЯ МАЛОСЕРНИСТЫХ НЕФТЯНЫХ ФРАКЦИЙ 2003
  • Смирнов В.К.
  • Ирисова К.Н.
  • Талисман Е.Л.
  • Бабаева И.А.
RU2245896C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ГИДРООБЛАГОРАЖИВАНИЯ НЕФТЯНЫХ ФРАКЦИЙ 2004
  • Ирисова К.Н.
  • Смирнов В.К.
  • Чванова Е.С.
  • Асеева А.П.
  • Пашкина Л.П.
  • Поняткова З.Ю.
  • Бабаева И.А.
RU2266786C1
КАТАЛИЗАТОР ПРЕВРАЩЕНИЯ УГЛЕВОДОРОДОВ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2004
  • Ирисова К.Н.
  • Смирнов В.К.
  • Чванова Е.С.
  • Асеева А.П.
  • Пашкина Л.П.
RU2254919C1
JP 6116570 A, 26.04.1994
US 2985579 A, 23.05.1961
GB 851969 A, 19.10.1960.

RU 2 333 935 C1

Авторы

Смирнов Владимир Константинович

Ирисова Капитолина Николаевна

Талисман Елена Львовна

Чванова Екатерина Сергеевна

Даты

2008-09-20Публикация

2007-04-26Подача