АУСТЕНИТНАЯ СТАЛЬ Российский патент 2008 года по МПК C22C38/58 C22C38/38 

Описание патента на изобретение RU2336364C1

Изобретение относится к области металлургии и может быть использовано в машиностроении и приборостроении для изготовления и наплавки поверхности деталей (подшипники скольжения, втулки, направляющие и др.), работающих в тяжелых условиях контактного нагружения (высокие нагрузки, интенсивный нагрев, плохие условия смазки, присутствие абразивных частиц, наличие коррозионной среды).

В настоящее время известны следующие аналоги заявляемой стали.

Аустенитная нержавеющая сталь, стойкая против заедания, содержащая (мас.%):

углерод0,03-0,10хром14-16никель14-17марганец0,5-3,0кремний0,4-5,5азот≤0,30фосфор≤0,05сера≤0,05железоостальное

Патент США №4146412, кл. 148/38 (С22С 38/02, С22С 38/58), заявл. 30.05.1978, №910484, опубл. 27.03.1979.

Данная аустенитная нержавеющая сталь содержит малое количество элементов внедрения - углерода (0,03-0,10 мас.%) и азота (≤0,30 мас.%) и вследствие этого обладает низким сопротивлением абразивному изнашиванию. Абразивное изнашивание является очень распространенным и интенсивным видом изнашивания, который существенно ограничивает срок службы многих деталей и узлов машин. Известно, что уровень абразивной износостойкости сталей различных классов, в том числе аустенитных, сильно зависит от содержания в них элементов внедрения - углерода и азота, которые определяют исходную прочность сталей и сплавов, а также их способность к деформационному упрочнению в процессе изнашивания. Низкая концентрация углерода в твердом растворе (аустените) и малое количество высокопрочных специальных карбидов в структуре анализируемой аустенитной стали являются причинами невысокой прочности поверхности и соответственно интенсивного изнашивания данной стали в условиях абразивного воздействия.

Известна также высокомарганцевая аустенитная хромистая нержавеющая сталь, содержащая (мас.%):

углерод≤0,12кремний0,1-1,0марганец8,0-14,0хром12.0-17.0азот0,01-0,30молибден0,10-0,30никель0,50-3,50железоостальное

Патент Японии №53-31811, кл. 10 J-172 (МКИ С22С 38/58), опубл. 0.5.09.1978. Авторы Созяма Нобуо, Оака Каюки, Аракава Мотохико, Ямагути Иосинори, Исида Саки.

Сталь легирована малым количеством элементов внедрения ≤0,12 мас.% углерода и 0,01-0,30 мас.% азота, вследствие чего ее абразивная износостойкость низка. Это ограничивает область применения рассматриваемой стали в качестве износостойкого конструкционного материала относительно небольшим кругом деталей, при эксплуатации которых исключено попадание в зону трения твердых абразивных частиц.

Известна также аустенитная нержавеющая сталь с высокой задиростойкостью, содержащая (мас.%):

углерод≤0,15кремний2,5-5,5марганец6-12никель5-15хром13-25бор(1-100)·10-4и (или) кальций(1-100)·10-4

более одного элемента из ряда:

титан<2,0ниобий<2,0кобальт<4,0вольфрам<1,5железоостальное

Патент Японии №54-150316, кл. 10 J-172 (C22C 38/58), заявл. 18.05.1978, №55-59573, опубл. 25.11.1979.

Сталь содержит малое количество углерода и в ней, кроме того, отсутствует азот. Хотя сталь легирована бором, оказывающим положительное влияние на сопротивление сталей абразивному изнашиванию, однако содержание бора в стали невелико (1-100)·10-4 и, вследствие этого, не может в полной мере компенсировать недостаток в степени легированности стали углеродом и азотом, которые оказывают определяющее влияние на абразивную износостойкость стальных поверхностей. По этой причине абразивная износостойкость рассматриваемой стали невелика. При трении и изнашивании в анализируемой аустенитной стали из-за отсутствия в ней азота не получает заметного развития механизм планарного скольжения дислокации. Планарное скольжение дислокации в аустените, как показано исследованиями авторов предлагаемой заявки, приводит к существенному снижению коэффициента трения нержавеющих аустенитных сталей. Отсутствие в рассматриваемой стали активного планарного скольжения дислокации является причиной ее повышенных коэффициента трения и интенсивности адгезионного изнашивания в условиях трения скольжения.

Наиболее близкой по составу к заявляемой стали является выбранная в качестве прототипа аустенитная сталь (мас.%):

углерод0,05-0,15кремний3,0-5,0марганец17-23хром14-18азот0,18-0,30молибден0.05-0,20ванадий0,03-0,10титан0,01-0,10медь0,25-0,50никель0.25-3,00железоостальное

Патент Российской Федерации №2207397 С2 (МКИ С22С 38/58), опубл. 27.06.2003 - Бюллетень №18.

Сталь-прототип легирована небольшим количеством углерода (0,05-0,15 мас.%) и азота (0,18-0,30 мас.%), роль которых в формировании у сталей высокого уровня абразивной износостойкости чрезвычайно велика. В силу этого, основным недостатком прототипа, как и приведенных выше аналогов, является его низкое сопротивление абразивному изнашиванию. В реальных условиях эксплуатации машин, механизмов, приборов, когда имеет место проникание твердых абразивных частиц из окружающей среды в зону контакта трущихся стальных деталей, происходит их ускоренное абразивное изнашивание, приводящее в конечном итоге к сокращению ресурса работы узла и всего изделия. По этой причине к конструкционным материалам, предназначенным для деталей и узлов трения скольжения, предъявляется также требование повышенной абразивной износостойкости. Разработка аустенитных сталей, обладающих одновременно высоким сопротивлением адгезионному и абразивному видам изнашивания, а также пониженным коэффициентом трения, является, таким образом, актуальной и сложной материаловедческой проблемой.

В основу изобретения была положена задача получения аустенитной стали, обладающей повышенной абразивной износостойкостью при сохранении значительного сопротивления адгезионному изнашиванию и относительно низкого коэффициента трения в условиях скольжения пар сталь-сталь.

Поставленная задача решается благодаря тому, что известная сталь, содержащая углерод, кремний, марганец, хром, азот молибден, ванадий, титан, медь, никель и железо, дополнительно содержит вольфрам и бор при следующих соотношениях компонентов (мас.%):

углерод0,42-1,70кремний0,45-4,51марганец7,8-20,2хром12,5-20,9азот0,17-0,51молибден0,05-0,22ванадий0,03-0,12вольфрам0,05-0,10титан0,01-0,15медь0,20-0,55никель0,23-1,20бор0,001-0,025

Таким образом, по сравнению с прототипом предлагаемая сталь отличается дополнительным содержанием вольфрама и бора при определенном соотношении компонентов. Это подтверждает соответствие критерию изобретения «новизна».

С целью доказательства соответствия предлагаемого изобретения критерию «изобретательский уровень» рассмотрим отличительные признаки объекта и других известных технических решений данного раздела техники.

В результате исследований, проведенных авторами предлагаемого изобретения, было впервые установлено, что наличие активного планарного скольжения дислокации в азотсодержащих хромомарганцевых нержавеющих аустенитных сталях приводит к существенному снижению их коэффициента трения и интенсивности адгезионного изнашивания в условиях сухого трения скольжения пар металл-металл. Последующие исследования этих же авторов показали, что активное планарное скольжение дислокации, обусловливающее снижение сопротивления поверхностного слоя пластической деформации в направлении трения, оказывает отрицательное влияние на абразивную износостойкость азотсодержащих низкоуглеродистых хромомарганцевых аустенитных сталей. Известно, что абразивная износостойкость аустенитных сталей может быть существенно повышена за счет увеличения содержания в них таких элементов, как углерод, азот, бор. Однако рост содержания углерода в аустените, приводящий к увеличению энергии дефектов упаковки, препятствует активному развитию в азотсодержащих нержавеющих аустенитных сталях планарного скольжения дислокации. Это должно способствовать увеличению коэффициента трения рассматриваемых сталей. Введение азота в количестве более 0,5 мас.% часто характеризуется ростом коэффициента трения азотсодержащих хромомарганцевых нержавеющих аустенитных сталей. Литературных данных, касающихся влияния бора на развитие в аустенитных сталях планарного скольжения дислокации, нами не было обнаружено.

Суть изобретения заключается в том, что предлагаемый состав азотсодержащей нержавеющей хромомарганцевой аустенитной стали оптимизируется таким образом, чтобы при сохранении в аустените активного планарного скольжения дислокации, обеспечивающего стали низкий коэффициент трения и малую интенсивность адгезионного изнашивания, существенно повысить сопротивления стали абразивному изнашиванию. Увеличение абразивной износостойкости азотсодержащей хромомарганцевой аустенитной стали достигается за счет повышения содержания в ней углерода и азота, а также введения бора и вольфрама. В закаленной от 1100°С стали углерод присутствует преимущественно в виде специальных карбидов титана, ванадия, вольфрама, молибдена и хрома. Часть углерода (≤0,3%) находится в γ-твердом растворе. Наличие в структуре стали высокопрочных специальных карбидов, а также твердорастворное упрочнение аустенита атомами углерода, азота и бора существенно повышают сопротивление аустенитной стали абразивному изнашиванию. Присутствие в γ-твердом растворе атомов азота, хрома и марганца способствуют развитию в стали при пластической деформации планарного скольжения дислокации.

Все вышеизложенное обеспечивает соответствие заявляемого объекта критерию «изобретательский уровень».

Для получения заявляемой стали слитки массой 2-50 кг выплавляли в электропечи на воздухе. Содержание серы и фосфора во всех сплавах не превышало 0,03% (мас.). Химический состав сплавов приведен в таблице 1.

Таблица 1Химический состав сплавовСплав №Содержание элементов, мас.%СSiMnCrNMoVTiWCuNiВ10,094,221,515,50,250,150,080,06-0,361,9-20,350,327,3612,00,110,040,010,010,020,150,150,000530,420,457,812,60,170,050,030,010,050,20,230,001040,913,216,116,30,270,100,070,080,070,400,600,010051,704,5120,220,90,510,220,120,150,100,551,200,025061,785,5024,022,30,550,300,150,220,150,602,000,0300

Сплав №1 соответствует прототипу, сплавы №№3, 4, 5 соответствуют заявляемой стали, сплавы №№2, 6 соответствуют сталям, химический состав которых выходит за пределы легирования заявляемой стали. Слитки отжигали при 1200°С в течение 12 часов и ковали в прутки сечением 10×10 мм. Прутки закаливали от 1100°С в воде. После указанной термообработки структура сплавов №№2-6 была аустенитно-карбидной, а сплава №1 (прототип) - аустенитной. В микроструктуре аустенитной матрицы сплавов присутствовали плоские скопления дислокации - мультиполи, свидетельствующие о склонности сталей к планарному скольжению. Из прутков сталей изготавливали образцы размером 7×7×20 мм для испытаний на трение и изнашивание. Испытание сталей на абразивное изнашивание осуществляли в условиях скольжения (возвратно-поступательное движение) рабочей (торцовой) части образцов по поверхности закрепленного абразива - шкурки марки 14А16НМ (электрокорунд зернистостью 160 мкм). Средняя скорость скольжения образца составляла 0,175 м/с, нормальная нагрузка 49 Н, длина рабочего хода образца 100 мм, величина поперечного смещения шкурки за один двойной ход образца 1,2 мм, путь трения - 17,6 м. Относительную абразивную износостойкость материала определяли как отношение потери массы образца армко-железа (эталон) к потере массы образца испытываемого материала. Потери массы образцов измеряли взвешиванием на аналитических весах с точностью 0,0001 г. Абразивную износостойкость материала определяли по результатам 2-4 параллельных испытаний. Испытание материалов на трение изнашивание в условиях сухого трения скольжения (адгезионный механизм изнашивания) выполняли в условиях трения скольжения стальных пар в воздушной среде по схеме палец-пластина. Данные испытания аустенитных сталей проводили в паре со сталью 45 (пластина), термообработанной на твердость 52-54 HRC (закалка от 850°С в масле, отпуск 200°С - 2 часа). Трение осуществляли при возвратно-поступательном движении образца (пальца) со скоростью 0,07 м/с и нормальной нагрузке 294 Н. Путь трения образца составлял 80 м, температура в зоне трения пары не превышала 50°С. Интенсивность изнашивания образцов рассчитывали по формуле Ih=Q/ρ·L·S, где Q - потери массы образца, г; ρ - плотность материала образца, г/см3; L - путь трения, см; S - геометрическая плотность контакта, см2. Коэффициент трения рассчитывали по формуле f=F/N, где F - сила трения, H; N - нормальная нагрузка, Н. Микротвердость сплавов измеряли при нагрузке 1,96 Н. Результаты испытаний приведены в таблицах 2 и 3.

Из таблицы 2 видно, что заявляемая сталь (сплавы №№3,4, 5) имеет в 1,4-1,8 раза более высокую абразивную износостойкость, чем прототип (сплав №1), а также превосходит в абразивной износостойкости сплавы №№2, 6.

Из таблицы 3 следует, что при сухом трении скольжения в паре со сталью 45, когда имеет место адгезионное изнашивание исследуемых пар, коэффициент трения и интенсивность изнашивания заявляемой стали (сплавы №№3, 4, 5) имеют практически такие же величины, как и прототип (сплав №1). Из данной таблицы также видно, что коэффициент трения и интенсивность изнашивания сплавов №№2, 6 заметно выше, чем у заявляемой стали (сплавы №№3, 4, 5).

Таблица 2Микротвердость (Н) и абразивная износостойкость (ε) сплавовСплав №Н, МПаε126001,7228002,4333002,7435502,9542003,0642502,6

Таблица 3Интенсивность изнашивания (Ih) и коэффициент трения (f) сплавов при испытании в паре со сталью 45 в режиме адгезионного изнашиванияСплав №Ihf11,5·10-70,2922,5·10-70,3131,5·10-70,2941,5·10-70,2951,4·10-70,2861,7·10-70,40

Похожие патенты RU2336364C1

название год авторы номер документа
АУСТЕНИТНАЯ СТАЛЬ 2001
  • Коршунов Л.Г.
  • Гойхенберг Ю.Н.
  • Черненко Н.Л.
RU2207397C2
СПЛАВ ДЛЯ ИЗНОСОСТОЙКОЙ НАПЛАВКИ 1999
  • Кулишенко Б.А.
  • Шумяков В.И.
  • Флягин А.А.
  • Балин А.Н.
RU2171165C2
СТАЛЬ 1993
  • Коршунов Л.Г.
  • Черненко Н.Л.
  • Макаров А.В.
  • Бердников И.А.
RU2061783C1
СПОСОБ ПОЛУЧЕНИЯ МЕХАНИЧЕСКИ ЛЕГИРОВАННОЙ АЗОТСОДЕРЖАЩЕЙ СТАЛИ 2010
  • Анциферов Владимир Никитович
  • Оглезнева Светлана Аркадьевна
RU2425166C1
ВЫСОКОПРОЧНАЯ ИЗНОСОСТОЙКАЯ СТАЛЬ ДЛЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ МАШИН (ВАРИАНТЫ) 2015
  • Хлусова Елена Игоревна
  • Голосиенко Сергей Анатольевич
  • Рябов Вячеслав Викторович
  • Сошина Татьяна Викторовна
  • Зисман Александр Абрамович
  • Орлов Виктор Валерьевич
  • Беляев Виталий Анатольевич
  • Шумилов Евгений Алексеевич
RU2606825C1
МНОГОФУНКЦИОНАЛЬНЫЕ АНТИФРИКЦИОННЫЕ НАНОСТРУКТУРИРОВАННЫЕ ИЗНОСОСТОЙКИЕ ДЕМПФИРУЮЩИЕ С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ СПЛАВЫ НА МЕТАСТАБИЛЬНОЙ ОСНОВЕ ЖЕЛЕЗА СО СТРУКТУРОЙ ГЕКСАГОНАЛЬНОГО ε-МАРТЕНСИТА И ИЗДЕЛИЯ С ИСПОЛЬЗОВАНИЕМ ЭТИХ СПЛАВОВ С ЭФФЕКТОМ САМООРГАНИЗАЦИИ НАНОСТРУКТУРНЫХ КОМПОЗИЦИЙ, САМОУПРОЧНЕНИЯ И САМОСМАЗЫВАНИЯ ПОВЕРХНОСТЕЙ ТРЕНИЯ, С ЭФФЕКТОМ САМОГАШЕНИЯ ВИБРАЦИЙ И ШУМОВ 2010
  • Волынова Тамара Федоровна
RU2443795C2
НЕСТАБИЛИЗИРОВАННАЯ АУСТЕНИТНАЯ СТАЛЬ, УСТОЙЧИВАЯ К ЛОКАЛЬНОЙ КОРРОЗИИ В СКД-ВОДЕ 2022
  • Писаревский Лев Александрович
RU2790717C1
Сталь 1983
  • Андрющенко Лидия Захаровна
  • Филиппов Михаил Александрович
  • Довгопол Виталий Иванович
  • Филиппенков Анатолий Анатольевич
  • Карклин Владимир Фрицевич
SU1108129A1
ИЗНОСОСТОЙКИЙ ЧУГУН 2010
  • Гущин Николай Сафонович
  • Бекишева Ольга Петровна
  • Гущина Ольга Владимировна
  • Гурьева Елена Васильевна
  • Находкин Валерий Михайлович
  • Морозов Александр Борисович
  • Гулак Ольга Николаевна
  • Чижов Николай Владимирович
  • Петрова Галина Петровна
RU2445389C1
Состав для наплавки 2020
  • Назарько Александр Сергеевич
  • Пломодьяло Роман Леонидович
  • Озолин Александр Витальевич
  • Обозний Вадим Сергеевич
RU2752057C1

Реферат патента 2008 года АУСТЕНИТНАЯ СТАЛЬ

Изобретение относится к области металлургии и может быть использовано в машиностроении и приборостроении для изготовления деталей и наплавки на поверхность деталей, работающих в тяжелых условиях контактного нагружения. Аустенитная сталь содержит углерод, кремний, марганец, хром, азот, молибден, ванадий, титан, медь, никель, вольфрам, бор и железо при следующем соотношении компонентов, мас.%: углерод 0,42-1,70, кремний 0,45-4,51, марганец 7,8-20,2, хром 12,5-20,9, азот 0,17-0,51, молибден 0,05-0,22, ванадий 0,03-0,12, вольфрам 0,05-0,10, титан 0,01-0,15, медь 0,20-0,55, никель 0,23-1,20, бор 0,0010-0,0250, железо - остальное. Повышается абразивная стойкость при сохранении значительного сопротивления адгезионному изнашиванию и относительно низкого коэффициента трения скольжения. 3 табл.

Формула изобретения RU 2 336 364 C1

Аустенитная сталь, содержащая углерод, кремний, марганец, хром, азот, молибден, ванадий, титан, медь, никель и железо, отличающаяся тем, что она дополнительно содержит вольфрам и бор при следующем соотношении компонентов, мас.%:

углерод0,42-1,70кремний0,45-4,51марганец7,8-20,2хром12,5-20,9азот0,17-0,51молибден0,05-0,22ванадий0,03-0,12вольфрам0,05-0,10титан0,01-0,15медь0,20-0,55никель0,23-1,20бор0,0010-0,0250железоостальное

Документы, цитированные в отчете о поиске Патент 2008 года RU2336364C1

Питатель стекловаренной печи 1978
  • Шутников Владимир Иванович
  • Астанин Владимир Иванович
  • Феколин Владимир Николаевич
  • Спирина Нина Андреевна
  • Дымов Александр Тимофеевич
  • Шутникова Людмила Павловна
SU668889A1
МЕТАЛЛИЧЕСКАЯ ГОТОВАЯ ДЛЯ ИСПОЛЬЗОВАНИЯ ПРОВОЛОКА И СПОСОБ ИЗГОТОВЛЕНИЯ ЭТОЙ ПРОВОЛОКИ 1997
  • Арно Жан-Клод
  • Депраэтер Эрик
  • Франсуа Марк
  • Серр Рауль
RU2177510C2
Сталь 1989
  • Глазистов Анатолий Григорьевич
SU1694684A1
GB 675809 А, 16.07.1952
Устройство световой индикации 1977
  • Дремина Валентина Максимовна
SU741053A2
Способ крашения тканей 1922
  • Костин И.Д.
SU62A1
Способ приготовления сернистого красителя защитного цвета 1915
  • Настюков А.М.
SU63A1
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами 1921
  • Богач В.И.
SU10A1
KR 940007374 B, 16.08.1994.

RU 2 336 364 C1

Авторы

Коршунов Лев Георгиевич

Гойхенберг Юрий Нафтулович

Черненко Наталья Леонидовна

Даты

2008-10-20Публикация

2006-12-19Подача