Предлагаемое изобретение относится к области металлургии, в частности к способам производства заклепочной проволоки из сплавов системы Al-Cu-Mg, применяемой в авиакосмической промышленности.
Известен способ непрерывного изготовления металлической проволоки, в котором круглую металлическую проволоку за одну или несколько операций уменьшают в диаметре прокаткой до получения необходимого размера и формы (Патент США №6886385, В21С 1/04. 2006 г.).
Недостатком известного способа является недостаточно высокий уровень механических свойств получаемой проволоки из алюминиевых сплавов.
Известен способ производства заклепочной проволоки из сплавов системы Al-Cu-Mg, включающий получение слитков, их гомогенизацию и механическую обработку, горячую прокатку, отжиг, охлаждение и волочение в несколько переходов с промежуточным отжигом (Структура и свойства полуфабрикатов из алюминиевых сплавов. Справ. изд. 2-е изд. М.: Металлургия, 1984, 408 с. // Глава XXII. Структура и свойства проволоки для крепежных деталей. с.370-388), прототип.
Недостатком известного способа являются низкие физико-механические свойства получаемого металла (например пластичность, сопротивление срезу, стабильность структуры), приводящие к низкому выходу годного.
Предлагаемый способ производства заклепочной проволоки из сплавов системы Al-Cu-Mg включает получение слитков, гомогенизацию слитков диаметром 130-150 мм с содержанием водорода менее 0,25 см3/100 г металла и величиной зерна менее 1 мм при температуре 500-525°С в течение 8-12 часов и последующее охлаждение со скоростью 10-50°С/ч с печью до температуры 250-400°С и далее на воздухе, механическую обработку заготовок до диаметра 100-120 мм с последующим нагревом до температуры 370-400°С в течение 5-8 часов, горячую прокатку до диаметра 8-14 мм с температурой конца прокатки не менее 85°С, последующий отжиг при температуре 390-420°С продолжительностью 1-3 часа и охлаждение с печью со скоростью 20-30°С/ч до температуры 200-250°С, далее на воздухе, волочение на конечный диаметр проволоки с общей степенью деформации 0,45-0,65, окончательный низкотемпературный отжиг готовой проволоки при температуре 260-280°С продолжительностью 1-2 часа с дальнейшим охлаждением на воздухе.
Предлагаемый способ производства заклепочной проволоки из сплавов системы Al-Cu-Mg включает получение слитков, гомогенизацию слитков диаметром 130-150 мм с содержанием водорода менее 0,25 см3/100 г металла и величиной зерна менее 1 мм при температуре 500-525°С в течение 8-12 часов и последующее охлаждение со скоростью 10-50°С/ч с печью до температуры 250-400°С и далее на воздухе, механическую обработку заготовок до диаметра 100-120 мм с последующим нагревом до температуры 370-400°С в течение 5-8 часов, горячую прокатку до диаметра 8-14 мм с температурой конца прокатки не менее 85°С, последующий отжиг при температуре 390-420°С продолжительностью 1-3 часа и охлаждение с печью со скоростью 20-30°С/ч до температуры 200-250°С, далее на воздухе, волочение на конечный диаметр проволоки с общей степенью деформации 0,70-0,98 по крайней мере с одним дополнительным промежуточным отжигом при температуре 360-380°С продолжительностью 1-3 часа с дальнейшим охлаждением на воздухе, со степенью деформации между промежуточными отжигами 0,20-0,40 и степенью деформации после последнего промежуточного отжига 0,45-0,65, окончательный низкотемпературный отжиг готовой проволоки при температуре 260-280°С продолжительностью 1-2 часа с дальнейшим охлаждением на воздухе.
Предложенный способ отличается от прототипа тем, что гомогенизации подвергают слитки диаметром 130-150 мм с содержанием водорода менее
0,25 см3/100 г металла и величиной зерна менее 1 мм при температуре 500-525°С в течение 8-12 часов и последующим охлаждением со скоростью 10-50°С/ч с печью до температуры 250-400°С и далее на воздухе, механическую обработку заготовок ведут до диаметра 100-120 мм с последующим нагревом до температуры 370-400°С в течение 5-8 часов, горячую прокатку проводят до диаметра 8-14 мм с температурой конца прокатки не менее 85°С, после чего ведут отжиг при температуре 390-420°С продолжительностью 1-3 часа и охлаждение со скоростью 20-30°С/ч с печью до температуры 200-250°С, далее на воздухе, а волочение осуществляют на конечный диаметр проволоки с общей степенью деформации 0,45-0,65, подвергая готовую проволоку окончательному низкотемпературному отжигу при температуре 260-280°С продолжительностью 1-2 часа с дальнейшим охлаждением на воздухе.
Предложенный способ отличается от прототипа тем, что гомогенизации подвергают слитки диаметром 130-150 мм с содержанием водорода менее
0,25 см3/100 г металла и величиной зерна менее 1 мм при температуре 500-525°С в течение 8-12 часов и последующим охлаждением со скоростью 10-50°С/ч с печью до температуры 250-400°С и далее на воздухе, механическую обработку заготовок ведут до диаметра 100-120 мм с последующим нагревом до температуры 370-400°С в течение 5-8 часов, горячую прокатку проводят до диаметра 8-14 мм с температурой конца прокатки не менее 85°С, после чего ведут отжиг при температуре 390-420°С продолжительностью 1-3 часа и охлаждение с печью со скоростью 20-30°С/ч до температуры 200-250°С, далее на воздухе, а волочение осуществляют на конечный диаметр проволоки с общей степенью деформации 0,70-0,98 по крайней мере с одним дополнительным промежуточным отжигом при температуре 360-380°С продолжительностью 1-3 часа с дальнейшим охлаждением на воздухе, со степенью деформации между промежуточными отжигами 0,20-0,40 и степенью деформации после последнего промежуточного отжига 0,45-0,65, готовую проволоку подвергают окончательному низкотемпературному отжигу при температуре 260-280°С продолжительностью 1-2 часа с дальнейшим охлаждением на воздухе.
Технический результат - повышение физико-механических свойств металла (стабильности структуры слитков, технологической пластичности слитков и готовой проволоки, сопротивления срезу) и, как следствие, повышение качества изделий и выхода годного при производстве проволоки.
Использование предлагаемого способа позволяет получить однородную мелкозернистую структуру заготовок, за счет чего повышается пластичность металла, позволяющая проводить прокатку с высокой степенью деформации без появления поверхностных дефектов и проводить последующее волочение с получением проволоки без поверхностных дефектов с мелкозернистой рекристаллизованной структурой и с повышенными характеристиками прочности и пластичности. Это ведет к улучшению расклепываемости и повышает выход годного при производстве проволоки.
Пример 1.
Приготовили в электрической печи сопротивления емкостью 1,5 т плавку массой 1000 кг из алюминиевого сплава марки В65 (4,43 Cu, 0,23 Mg, 0,40 Mn, 0,06 Ti, 0,08 Fe, 0,09 Si, мас.%, алюминий - остальное), из которой отлили полунепрерывным методом слитки диаметром 134 мм со средним сечением (хордой) зерна 0,6 мм при содержании водорода 0,22 см3/100 г металла и отсутствии неметаллических включений и пористости. Слитки гомогенизировали при температуре 520°С продолжительностью 10 часов, охлаждали со скоростью 20°С/ч с печью до температуры 340°С и далее на воздухе, подвергали механической обработке на диаметр 120 мм для удаления мелких поверхностных дефектов и окисных плен.
Полученные после механической обработки заготовки длиной 1 м нагрели до температуры 390°С в течение 7 часов и подвергли горячей прокатке до диаметра 10 мм с температурой конца прокатки 90°С.
Провели отжиг катанки при 410°С - 2 ч с охлаждением с печью со скоростью 25°С/ч до температуры 250°С, далее охлаждение на воздухе с последующим волочением катанки на конечный диаметр проволоки 6 мм на многократном волочильном станке за четыре перехода через фильеры диаметром 8,5-7,3-6,5-6,0 мм с общей степенью деформации ε=0,64 и степенью деформации по отдельным переходам 0,28, 0,26, 0,21 и 0,15 соответственно.
Степень деформации при этом определяется по соотношению
ε=(D2-d2)/D2,
где ε - степень деформации; D - диаметр проволоки до волочения, мм; d -промежуточный или конечный диаметр проволоки, мм.
Затем провели низкотемпературный отжиг проволоки при 270°С продолжительностью 1,5 часа.
Провели испытания проволоки с определением временного сопротивления σВ, относительного удлинения δ5, сопротивления срезу τср и расклепываемости после окончательной термической обработки, заключающейся согласно директивным документам в нагреве при температуре 520°С с выдержкой 1 час, последующей закалке в воду с температурой 20°С и старения при 75°С с выдержкой 24 часа.
В таблице 1 приведены свойства полученной проволоки после окончательной термической обработки, удовлетворяющие требованиям технических условий. Образцы проволоки проходят испытания на расклепываемость без появления трещин.
Пример 2.
Для прокатки использовали заготовки, получение которых описано в примере 1. Заготовку подвергли горячей прокатке после нагрева до температуры 390°С в течение 7 часов до диаметра 13 мм с температурой конца прокатки 150°С. Катанку диаметром 13 мм подвергли отжигу при 410°С - 2 ч с охлаждением с печью со скоростью 25°С/ч до температуры 250°С, далее охлаждение на воздухе.
Волочение отожженной катанки на конечный диаметр проволоки 6 мм проводили на многократном волочильном станке с двумя промежуточными отжигами при температуре 375°С продолжительностью 2 часа с дальнейшим охлаждением на воздухе по схеме (диаметр фильеры): 11,5-10,1-отжиг-9,1-8,6-отжиг-7,4-6,3-6,0 с общей степенью деформации ε=0,79 и степенью деформации между промежуточными отжигами 0,40 и 0,28 со степенью деформации после последнего промежуточного отжига 0,51. Низкотемпературный отжиг провели при 270°С продолжительностью 1 час.
В таблице 2 приведены свойства полученной проволоки после окончательной термической обработки по примененному выше в варианте 1 режиму. Кроме высоких механических свойств, она обладает хорошей деформируемостью при осадке после отжига проволоки в холоднодеформированном состоянии и после упрочняющей термической обработки.
Также провели испытания проволоки, полученной по способу-прототипу.
В таблице 3 сопоставлены свойства и выход годного при изготовлении проволоки по вариантам 1 и 2 и по известному способу.
Таким образом, предложенный способ позволяет повысить прочность и пластичность получаемой проволоки без поверхностных дефектов и, как следствие, улучшить расклепываемость на 35% и повысить выход годного на 30%.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения деформированных полуфабрикатов из алюминиево-кальциевого композиционного сплава | 2019 |
|
RU2716566C1 |
СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА ДЛЯ ВЫСОКОПРОЧНЫХ КРЕПЕЖНЫХ ИЗДЕЛИЙ | 2022 |
|
RU2793901C1 |
Способ изготовления тонкой проволоки из биосовместимого сплава TiNbTaZr | 2018 |
|
RU2694099C1 |
Способ получения тонкой проволоки из сплава TiNiTa | 2020 |
|
RU2759624C1 |
Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы | 2017 |
|
RU2656626C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)- | 2017 |
|
RU2682069C1 |
Способ получения проволоки из сплава титан-ниобий-тантал для применения в производстве сферического порошка | 2020 |
|
RU2751065C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β) - | 2017 |
|
RU2682071C1 |
Сплав на основе алюминия для производства проволоки и способ её получения | 2021 |
|
RU2753537C1 |
Способ получения холоднокатаных листов из вторичного алюминиевого сплава | 2024 |
|
RU2826055C1 |
Предлагаемое изобретение относится к области металлургии, в частности к способам производства заклепочной проволоки из сплавов системы Al-Cu-Mg, применяемой в авиакосмической промышленности. Способ включает получение слитков, их гомогенизацию и механическую обработку, горячую прокатку, отжиг, охлаждение и волочение в несколько переходов. Гомогенизации подвергают слитки диаметром 130-150 мм с содержанием водорода менее 0,25 см3/100 г металла и величиной зерна менее 1 мм при температуре 500-525°С в течение 8-12 часов с последующим охлаждением с печью со скоростью 10-50°С/ч до температуры 250-400°С и далее на воздухе. Механическую обработку заготовок ведут до диаметра 100-120 мм, затем заготовки нагревают до температуры 370-400°С в течение 5-8 часов и проводят горячую прокатку до диаметра 8-14 мм с температурой конца прокатки не менее 85°С. После этого ведут отжиг при температуре 390-420°С продолжительностью 1-3 часа и охлаждение с печью со скоростью 20-30°С/ч до температуры 200-250°С, далее на воздухе. Волочение осуществляют на конечный диаметр проволоки с общей степенью деформации 0,45-0,65, подвергая готовую проволоку окончательному низкотемпературному отжигу при температуре 260-280°С продолжительностью 1-2 часа с дальнейшим охлаждением на воздухе. Повышают физико-механические свойства металла: стабильность структуры слитков, технологическую пластичность слитков и готовой проволоки, сопротивление срезу. 2 н.п. ф-лы, 3 табл.
1. Способ производства заклепочной проволоки из сплавов системы Al-Cu-Mg, включающий получение слитков, их гомогенизацию и механическую обработку, горячую прокатку, отжиг, охлаждение и волочение в несколько переходов, отличающийся тем, что гомогенизации подвергают слитки диаметром 130-150 мм с содержанием водорода менее 0,25 см3/100 г металла и величиной зерна менее 1 мм при температуре 500-525°С в течение 8-12 ч и последующим охлаждением с печью со скоростью 10-50°С/ч до температуры 250-400°С и далее на воздухе, механическую обработку заготовок ведут до диаметра 100-120 мм, затем заготовки нагревают до температуры 370-400°С в течение 5-8 ч и проводят горячую прокатку до диаметра 8-14 мм с температурой конца прокатки не менее 85°С, после чего ведут отжиг при температуре 390-420°С продолжительностью 1-3 ч и охлаждение с печью со скоростью 20-30°С/ч до температуры 200-250°С, далее на воздухе, а волочение осуществляют на конечный диаметр проволоки с общей степенью деформации 0,45-0,65, подвергая готовую проволоку окончательному низкотемпературному отжигу при температуре 260-280°С продолжительностью 1-2 ч с дальнейшим охлаждением на воздухе.
2. Способ производства заклепочной проволоки из сплавов системы Al-Cu-Mg, включающий получение слитков, их гомогенизацию и механическую обработку, горячую прокатку, отжиг, охлаждение и волочение в несколько переходов по крайней мере с одним промежуточным отжигом, отличающийся тем, что гомогенизации подвергают слитки диаметром 130-150 мм с содержанием водорода менее 0,25 см3/100 г металла и величиной зерна менее 1 мм при температуре 500-525°С в течение 8-12 ч и последующим охлаждением с печью со скоростью 10-50°С/ч до температуры 250-400°С и далее на воздухе, механическую обработку заготовок ведут до диаметра 100-120 мм, затем заготовки нагревают до температуры 370-400°С в течение 5-8 ч и проводят горячую прокатку до диаметра 8-14 мм с температурой конца прокатки не менее 85°С, после чего ведут отжиг при температуре 390-420°С продолжительностью 1-3 ч и охлаждение с печью со скоростью 20-30°С/ч до температуры 200-250°С, далее на воздухе, а волочение осуществляют на конечный диаметр проволоки с общей степенью деформации 0,70-0,98 по крайней мере с одним дополнительным промежуточным отжигом при температуре 360-380°С продолжительностью 1-3 ч с дальнейшим охлаждением на воздухе, со степенью деформации между промежуточными отжигами 0,20-0,40 и степенью деформации после последнего промежуточного отжига 0,45-0,65, готовую проволоку подвергают окончательному низкотемпературному отжигу при температуре 260-280°С продолжительностью 1-2 ч с дальнейшим охлаждением на воздухе.
БЕЛОВ А.Ф | |||
и др | |||
Структура и свойства полуфабрикатов из алюминиевых сплавов | |||
- М.: Металлургия, 1984, с.375-377 | |||
Способ изготовления заклепок из термоупрочняемых алюминиевых сплавов | 1990 |
|
SU1808879A1 |
Устройство для автоматического фрезерования пробы на заданную глубину | 1985 |
|
SU1263495A1 |
УСТРОЙСТВО для ОПРЕДЕЛЕНИЯ ВЕСОВОЙ И АКТИВНОЙ КОНЦЕНТРАЦИИ АЭРОЗОЛЯ | 0 |
|
SU286264A1 |
Авторы
Даты
2009-05-10—Публикация
2007-08-27—Подача