СПОСОБ КРИОГЕННО-ДЕФОРМАЦИОННОЙ ОБРАБОТКИ СТАЛИ Российский патент 2009 года по МПК C21D8/00 C21D6/04 C21D6/00 

Описание патента на изобретение RU2365633C1

Изобретение относится к области черной металлургии, конкретнее к способам деформационной обработки коррозионностойких сталей с мартенситным превращением при криогенных температурах, и может быть использовано, например, при изготовлении тяжелонагруженных деталей в машиностроении.

Известен способ деформационной обработки сталей, включающий закалку, пластическую деформацию при жидком азоте и отпуск (Патент РФ №2049126, C21/D 9/22, 05.02.1993 г.).

Основными недостатками указанного способа являются низкие прочностные характеристики обработанных сталей и высокие внутренние микронапряжения.

Прототипом заявленного изобретения по технической сущности является способ обработки аустенитных нержавеющих сталей, включающий закалку, пластическую деформацию при температуре 77 К (-196°С) до ε=10% и отпуск при 730-770 К (530-550°С) в упруго-напряженном состоянии (Патент РФ №2287592, C21D 8/00, 28.07.2005 г.). Недостатками данного изобретения являются относительно невысокие прочностные характеристики сталей, что связано с невозможностью получения наноструктурного состояния в сталях вследствие низкой степени пластической деформации (до 10%) и применение отпуска в упруго-напряженном состоянии, что требует использования специального оборудования и существенно ограничивает размер, в частности длину, обрабатываемых заготовок.

Техническим результатом предлагаемого изобретения является получение нанокристаллической структуры в коррозионно-стойких сталях, обеспечивающей высокие прочностные характеристики, низкий уровень внутренний напряжений и, как следствие, высокую эксплуатационную надежность деталей.

Указанный технический результат достигается тем, что в способе деформационной обработки стали, включающем закалку, пластическую деформацию при криогенных температурах и высокотемпературный отпуск, согласно изобретению обрабатывают сталь, содержащую следующие компоненты, мас.%:

Углерод 0,01-0,25 Хром 13,0-18,0 Никель 8,0-18,0 Алюминий 0,1-3,0 Титан 0,1-3,0 Марганец до 0,3 Кремний до 0,3 Молибден до 0,2 Медь до 0,2 Сера до 0,03 Фосфор до 0,03 Железо и неизбежные примеси Остальное

при выполнении условия: сумма алюминия и титана равна 0,5-3,2;

пластическую деформацию осуществляют по крайней мере в две стадии с суммарной степенью деформации 60-97%, после каждой стадии проводят низкотемпературный отпуск, а высокотемпературный отпуск ведут на заключительной стадии обработки заготовок. А также тем, что низкотемпературный отпуск проводят при температуре 150-200°С, а высокотемпературный отпуск проводят при 480-550°С, что пластическую деформацию осуществляют с помощью прокатки с суммарной степенью деформации 60-90% или с помощью волочения с суммарной степенью деформации 60-97%.

Отличительными признаками предлагаемого способа являются:

- выплавка аустенитной коррозионностойкой стали заданного химического состава;

- пластическая деформация стали с суммарной степенью деформации 60-97%;

- проведение низкотемпературного отпуска после каждой стадии деформации.

Эти отличительные признаки в совокупности с оптимальным химическим составом коррозионно-стойкой стали позволяют получить наноструктурное состояние аустенитно-мартенситной матрицы с высокими прочностными характеристиками, низким уровнем внутренних микронапряжений и высокой эксплуатационной надежностью деталей.

Химический состав стали выбран после детальных экспериментов по криогенной деформации аустенитных сталей с различным содержанием легирующих элементов. Содержание углерода в интервале 0,01-0,25% обеспечивает карбидное упрочнение при термической обработке стали. При более низком содержании углерода образование карбидов не происходит, при более высоком - наблюдается снижение пластичности стали. Хром вводится в состав в пределах 13,0-18,0% для получения коррозионной стойкости стали: при более низком содержании коррозионная стойкость не достигается, при более высоком - не происходит превращения аустенита в мартенсит после деформации при криогенных температурах. Содержание никеля в интервале 8,0-18,0% обеспечивает формирование аустенита после закалки и его частичное превращение в мартенсит при криогенной деформации. При содержании никеля за пределами указанного интервала данный эффект не наблюдается. Алюминий и титан вводятся в сталь в количестве 0,1-3,0% каждый при выполнении условия, что их сумма равна 0,5-3,2%, для обеспечения выделения упрочняющих интерметаллидных фаз при высокотемпературном отпуске. При их содержании менее 0,5% объемная доля интерметаллидов при высоком отпуске мала и упрочнение неэффективно. При их содержании более 3,2% наблюдается снижение пластичности и охрупчивание стали. Именно тот химический состав стали, который указан в заявке, обеспечивает наиболее интенсивное формирование в аустенитной матрице нанокристаллической мартенситной фазы в процессе деформации при криогенных температурах. Как следствие, именно такой состав приводит к наиболее заметному упрочнению стали, содержащей после деформации аустенитную фазу и наномасштабные кристаллы мартенсита, то есть имеющей двухфазную аустенитно-мартенситную структуру. Наличие исходной аустенитной фазы обеспечивает достаточную пластичность сплава, хотя размер фрагментов аустенита также находится в нанометрическом диапазоне. Предлагаемый химический состав, как показали проведенные исследования, обеспечивает также выделение при высокотемпературном отпуске ультрадисперсных (нанокристаллических) интерметаллидных фаз, что приводит к дополнительному упрочнению. Выделение интерметаллидов происходит в стали и без деформационной обработки, однако после деформационной обработки дисперсность и объемная доля частиц фаз увеличивается и, как следствие, упрочнение повышается.

Пластическая деформация стали с суммарной степенью деформации 60-97% обеспечивает формирование нанокристаллической структуры, что приводит к значительному повышению прочностных характеристик. Обработка с меньшими степенями деформации не позволяет получить фрагментированную структуру и наноструктурное состояние и, как следствие, не обеспечивает получение высоких показателей прочности и твердости. Деформация стали с помощью прокатки наиболее эффективна при суммарной степени деформации 60-90%. При более высокой степени деформации происходит снижение пластичности и охрупчивание стали. Деформация стали с помощью волочения может проводиться с более высокими степенями деформации до 97% при относительно небольшом снижении пластичности, что обеспечивается всесторонним обжатием и малым сечением заготовки. Деформация проводится по крайней мере в две стадии в сочетании с низкотемпературным отпуском, так как это позволяет избежать снижения пластичности и повышения внутренних микронапряжений.

Проведение низкотемпературного отпуска после каждой стадии деформации является обязательной операцией, так как обеспечивает значительное снятие внутренних микронапряжений, вызванных деформационной обработкой, и способствует повышению эксплуатационной надежности деталей.

При высокотемпературном отпуске на заключительной стадии обработки происходит выделение дисперсных интерметаллидных фаз, что приводит к дополнительному упрочнению и повышению показателей прочности и твердости после обработки стали по предложенному способу.

Эффективность применения данного изобретения можно продемонстрировать на следующих примерах.

Пример 1. Плавку аустенитной стали с химическим составом, мас.%: 0,19 C, 14,0 Cr, 13,8 Ni, 1,3 Al, 0,3 Ti, 0,18 Mn, 0,17 Si, 0,1 Mo, 0,1 Cu, 0,005 S, 0,01 P, ΣAl+Ti=1,6 (остальное - железо и неизбежные примеси) выплавляли вакуумно-индукционным способом, проводили гомогенизацию и зачистку слитков, слитки ковали при температуре 1050-950°С на пруток квадратного сечения. Пруток квадрат 12 мм подвергали закалке от 1000°С на воздухе, проводили деформацию с помощью прокатки при температуре жидкого азота -196°С за два прохода (в две стадии) с суммарной степенью деформации ε=70% (с 12 до 3,5 мм), после каждого прохода осуществляли низкотемпературный отпуск при температуре 200°С в течение 1 ч, на заключительной стадии обработки проводили высокотемпературный отпуск при температуре 480°С в течение 2 ч. В табл.1 и 2 приведены данные рентгенографического исследования стали после обработки по предлагаемому способу. Результаты определения механических свойств образцов из стали, обработанной по предлагаемому способу, приведены в табл.3, п.1.

Пример 2. Плавку аустенитной стали с химическим составом, мас.%: 0,12 C, 13,5 Cr, 15,8 Ni, 0,8 Al, 0,6 Ti, 0,10 Mn, 0,12 Si, 0,1 Mo, 0,1 Cu, 0,01 S, 0,01 P, ΣAl+Ti=1,4 (остальное - железо и неизбежные примеси) выплавляли вакуумно-индукционным способом, проводили гомогенизацию и зачистку слитков, слитки ковали при температуре 1050-950°С на пруток круглого сечения. Пруток диаметром 3 мм подвергали закалке от 1000°С на воздухе, проводили деформацию с помощью волочения при температуре жидкого азота -196°С за три прохода (в три стадии) с суммарной степенью деформации ε=90% (с 3 мм до 0,5 мм), после каждого прохода осуществляли низкий отпуск при температуре 200°С в течение 1 ч, на заключительной стадии обработки проводили высокотемпературный отпуск при температуре 550°С в течение 2 ч. Результаты испытания образцов из стали, обработанной по предлагаемому способу с помощью волочения, приведены в табл.3, п.2.

Проведено изучение связи изменений структуры и механических свойств предложенной стали после криогенно-деформационной обработки.

Электронно-микроскопическое исследование предложенной стали показало, что после деформации в структуре аустенита, имеющего фрагменты до 100 нм, наблюдаются также нанокристаллы мартенсита размером до 50-60 нм в длину и до 10-20 нм по толщине, а после высокотемпературного отпуска при 480°С, 2 ч - дополнительно и интерметаллидные нанофазы Ni3Ti и NiAl размером до 5-10 нм. Они выделяются, главным образом, на межфазных границах и внутри фрагментов аустенитных и мартенситных кристаллов. В совокупности появление в структуре двух нанокристаллических фаз различной природы приводит к существенному возрастанию твердости при сохранении удовлетворительной пластичности стали.

В табл.1 приведены данные рентгенографического анализа предложенной стали после деформации 70%. Видно, что в структуре появилось значительное количество мартенсита (около 30%). Следует отметить, что при деформации 80-90% объемная доля мартенсита увеличивается до 40-50%. Таким образом, после пластической деформации при температуре жидкого азота -196°С (криогенной температуре) формируется двухфазная аустенитно-мартенситная структура. Данные, приведенные в табл.2, показывают, что после низкотемпературного отпуска при 200°С, 1 ч фазовый состав не изменяется, а ширина рентгеновских интерференционных линий аустенита и мартенсита уменьшается. Получены следующие результаты: ширина линий β (220) мартенсита снижается с 52 до 36 мрад и β (222) аустенита - с 38 до 25 мрад. Снижение ширины рентгеновских линий на 25-35% свидетельствует о существенном снятии внутренних микронапряжений в стали, что способствует повышению надежности деталей.

Проведено сравнение механических свойств предложенной стали и стали, обработанной по прототипу, который включает закалку от 1050°С, деформацию методом прокатки при температуре жидкого азота 77 К (-196°С) до ε=10%, отпуск в упруго-напряженном состоянии при 730 К (530°С) в течение 1 ч. Результаты испытаний образцов из аустенитной стали, обработанной по прототипу, приведены в табл.3, п.3.

Полученные результаты (табл.2, 3) свидетельствуют о том, что обработка аустенитной стали по предлагаемому способу в сравнении с прототипом позволяет повысить прочностные характеристики стали: в частности, предел прочности σВ возрастает на 20-30%, предел текучести σ0,2 увеличивается на 50-60%, при некотором повышении твердости. Кроме того, проведение низкотемпературного отпуска существенно снижает уровень внутренних микронапряжений в предложенной стали, что обеспечивает повышение эксплуатационной надежности деталей.

Таблица 1 Количество аустенита и мартенсита в структуре аустенитной стали, изготовленной и обработанной по предлагаемому способу. % об. γ-фазы % об. α-фазы 1 77.2±0.2 22.8±0.2 2 69.2±0 30.8±0.2 Примечание: 1 - закалка, деформация при жидком азоте за 2 прохода (в две стадии), ε=70%, отпуск после каждого прохода при 200°С, 1 ч; 2 - закалка, деформация при жидком азоте за 2 прохода (в две стадии), ε=70%, отпуск после каждого прохода при 200°С, 1 ч + отпуск на заключительной стадии при 480°С, 2 ч. Таблица 2 Влияние низкотемпературного отпуска аустенитной стали на изменение ширины рентгеновских интерференционных линий β (222) аустенита и β (220) мартенсита % об. γ-фазы % об. α-фазы β (222) γ-фазы β (220) α-фазы 1 77,2 22,8 38 52 2 77,2 22,8 25 36 Примечание: 1. - образец 1, закалка, деформация при жидком азоте за 2 прохода (в две стадии), ε=70%; 2 - образец 2, то же, что образец 1, + отпуск после каждого прохода при 200°С, 1 ч. Таблица 3 Механические свойства аустенитной стали, изготовленной и обработанной по предлагаемому способу, и аустенитной стали, обработанной по прототипу. Способ обработки ε, % σВ, МПа σ0,2, МПа δ, % HRC 1 По предлагаемому способу 70 2000 1600 8 64 2 90 2200 1800 6 68 3 По прототипу 10 1750 1050 9 64 Примечание: ε - степень деформации при жидком азоте, σВ - предел прочности, σ0,2 - предел текучести, δ - относительное удлинение, HRC - твердость по Роквеллу.

Похожие патенты RU2365633C1

название год авторы номер документа
СПОСОБ КРИОГЕННО-ДЕФОРМАЦИОННОЙ ОБРАБОТКИ СТАЛИ 2009
  • Шахпазов Евгений Христофорович
  • Углов Владимир Александрович
  • Глезер Александр Маркович
  • Жуков Олег Петрович
  • Русаненко Виктор Васильевич
  • Клиппенштейн Алексей Дмитриевич
RU2394922C1
СПОСОБ КОМБИНИРОВАННОЙ КРИОГЕННО-ДЕФОРМАЦИОННОЙ ОБРАБОТКИ СТАЛИ 2010
  • Шахпазов Евгений Христофорович
  • Углов Владимир Александрович
  • Глезер Александр Маркович
  • Жуков Олег Петрович
  • Русаненко Виктор Васильевич
  • Блинова Елена Николаевна
  • Клиппенштейн Алексей Дмитриевич
RU2422541C1
СПОСОБ КРИОГЕННОЙ ОБРАБОТКИ АУСТЕНИТНОЙ СТАЛИ 2011
  • Шахпазов Евгений Христофорович
  • Углов Владимир Александрович
  • Глезер Александр Маркович
  • Жуков Олег Петрович
  • Русаненко Виктор Васильевич
  • Блинова Елена Николаевна
  • Клиппенштейн Алексей Дмитриевич
RU2464324C1
СПОСОБ ОБРАБОТКИ ВЫСОКОПРОЧНОЙ АУСТЕНИТНОЙ СТАЛИ 2011
  • Шахпазов Евгений Христофорович
  • Углов Владимир Александрович
  • Глезер Александр Маркович
  • Жуков Олег Петрович
  • Русаненко Виктор Васильевич
  • Блинова Елена Николаевна
  • Клиппенштейн Алексей Дмитриевич
RU2451754C1
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ МЕТАСТАБИЛЬНОЙ АУСТЕНИТНОЙ СТАЛИ 2015
  • Литовченко Игорь Юрьевич
  • Тюменцев Александр Николаевич
  • Аккузин Сергей Александрович
  • Полехина Надежда Александровна
RU2598744C1
СПОСОБ ПОВЫШЕНИЯ ПРОЧНОСТИ СТАБИЛЬНОЙ АУСТЕНИТНОЙ СТАЛИ 2016
  • Литовченко Игорь Юрьевич
  • Аккузин Сергей Александрович
  • Полехина Надежда Александровна
  • Тюменцев Александр Николаевич
RU2641429C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ КОРРОЗИОННО-СТОЙКИХ МАРТЕНСИТНОСТАРЕЮЩИХ СТАЛЕЙ 2013
  • Новиков Виктор Иванович
  • Недашковский Константин Иванович
RU2535889C1
Способ получения упрочненных заготовок крепежных изделий из нержавеющей аустенитной стали 2020
  • Панов Дмитрий Олегович
  • Наумов Станислав Валентинович
  • Перцев Алексей Сергеевич
  • Кудрявцев Егор Алексеевич
  • Симонов Юрий Николаевич
  • Салищев Геннадий Алексеевич
RU2749815C1
СПОСОБ ОБРАБОТКИ ХРОМОМАРГАНЦЕВЫХ СТАЛЕЙ 1992
  • Чейлях Александр Петрович[Ua]
RU2048539C1
СПОСОБ ОПРЕДЕЛЕНИЯ КРИТЕРИЯ СОПРОТИВЛЕНИЯ МЕТАЛЛОВ И СПЛАВОВ ХРУПКОМУ РАЗРУШЕНИЮ 2008
  • Алексеева Людмила Егоровна
  • Ливанова Ольга Викторовна
  • Филиппов Георгий Анатольевич
  • Шахпазов Евгений Христофорович
RU2383006C1

Реферат патента 2009 года СПОСОБ КРИОГЕННО-ДЕФОРМАЦИОННОЙ ОБРАБОТКИ СТАЛИ

Изобретение относится к области черной металлургии, конкретнее к способам обработки коррозионно-стойких аустенитных сталей, и может быть использовано, например, для изготовления тяжелонагруженных деталей в машиностроении. Техническим результатом изобретения является получение нанокристаллической структуры в аустенитной стали, обеспечивающей высокие прочностные характеристики, низкий уровень внутренних микронапряжений и высокую эксплуатационную надежность деталей. Способ включает выплавку аустенитной стали, содержащей компоненты в следующем соотношении, мас.%: углерод 0,01-0,25; хром 13,0-18,0; никель 8,0-18,0; алюминий 0,1-3,0; титан 0,1-3,0; марганец до 0,3; кремний до 0,3; молибден до 0,2; медь до 0,2; сера до 0,03; фосфор до 0,03; железо и неизбежные примеси - остальное, при выполнении условия: сумма алюминия и титана 0,5-3,2; закалку, пластическую деформацию при криогенных температурах в несколько стадий с суммарной степенью деформации 60-97%, низкотемпературный отпуск после каждой стадии и высокотемпературный отпуск на заключительной стадии обработки заготовок. Также способ включает низкотемпературный отпуск при температуре 150-200°С, высокотемпературный отпуск при 480-550°С, пластическую деформацию с помощью прокатки с суммарной степенью деформации 60-90%, пластическую деформацию с помощью волочения с суммарной степенью деформации 60-97%. 3 з.п. ф-лы, 3 табл.

Формула изобретения RU 2 365 633 C1

1. Способ деформационной обработки стали, включающий закалку, пластическую деформацию при криогенных температурах и высокотемпературный отпуск, отличающийся тем, что обрабатывают сталь, содержащую компоненты в следующем соотношении, мас.%:
углерод 0,01-0,25 хром 13,0-18,0 никель 8,0-18,0 алюминий 0,1-3,0 титан 0,1-3,0 марганец до 0,3 кремний до 0,3 молибден до 0,2 медь до 0,2 сера до 0,03 фосфор до 0,03 железо и неизбежные примеси остальное,


при выполнении условия: сумма алюминия и титана равна 0,5-3,2, пластическую деформацию осуществляют, по крайней мере, в две стадии с суммарной степенью деформации 60-97%, после каждой стадии проводят низкотемпературный отпуск, а высокотемпературный отпуск проводят на заключительной стадии обработки заготовок.

2. Способ по п.1, отличающийся тем, что низкотемпературный отпуск проводят при температуре 150-200°С, а высокотемпературный отпуск проводят при 480-550°С.

3. Способ по п.1 или 2, отличающийся тем, что пластическую деформацию осуществляют прокаткой с суммарной степенью деформации 60-90%.

4. Способ по п.1 или 2, отличающийся тем, что пластическую деформацию осуществляют волочением с суммарной степенью деформации 60-97%.

Документы, цитированные в отчете о поиске Патент 2009 года RU2365633C1

СПОСОБ МЕХАНИКО-ТЕРМИЧЕСКОГО УПРОЧНЕНИЯ НЕРЖАВЕЮЩИХ АУСТЕНИТНЫХ СТАЛЕЙ 2005
  • Камышанченко Николай Васильевич
  • Неклюдов Иван Матвеевич
  • Роганин Михаил Николаевич
RU2287592C1
Способ термомеханической обработки нагруженных деталей 1980
  • Данченко Валерий Георгиевич
SU956894A1
Способ обработки инструмента 1990
  • Кирик Николай Дмитриевич
  • Пишник Игорь Михайлович
  • Глова Игорь Иванович
SU1770389A1
СПОСОБ ОБРАБОТКИ СТАЛЬНЫХ ИЗДЕЛИЙ 2000
  • Макаров А.В.
  • Коршунов Л.Г.
  • Осинцева А.Л.
RU2194773C2

RU 2 365 633 C1

Авторы

Шахпазов Евгений Христофорович

Глезер Александр Маркович

Жуков Олег Петрович

Русаненко Виктор Васильевич

Даты

2009-08-27Публикация

2008-06-24Подача