СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИНСТРУМЕНТАЛЬНЫХ ШТАМПОВЫХ СТАЛЕЙ Российский патент 2009 года по МПК C21D9/22 

Описание патента на изобретение RU2371488C1

Изобретение относится к металлургии, конкретно к способам термической обработки заготовок из инструментальных штамповых сталей, и может широко использоваться при изготовлении прессовой оснастки, работающей при высоких температурах.

Известен способ изготовления крупногабаритных поковок, включающий нагрев, ковку и высокотемпературный отжиг, выдержку и окончательное охлаждение с лимитированной скоростью (Авторское свидетельство СССР №1689406, кл. C21D 1/02, 1989).

Недостатком данного способа термической обработки поковок является получение крупного зерна аустенита, так как высокотемпературный нагрев, ведущий к росту зерна, проводится после деформации, а ускоренное охлаждение на воздухе выполняется после завершения не только γ→α превращения, но и перлитного, и не измельчает зерна аустенита.

Наиболее близким по совокупности существенных признаков к предлагаемому является способ получения заготовок из инструментальных сталей, состоящий из высокотемпературного нагрева, ковки с этого нагрева, изотермического отжига и охлаждения с заданными скоростями (Патент РФ №2058999, кл. C21D 9/22, 1993).

Однако использование режима термической обработки, предложенного в прототипе, не позволяет измельчить зерно аустенита, следовательно, обеспечить повышенные механические характеристики штамповых сталей, особенно ударную вязкость.

Основной задачей изобретения является измельчение зерна аустенита заготовок инструментальных штамповых сталей.

Другая задача изобретения заключается в получении повышенных механических свойств заготовок сталей.

Для достижения поставленных задач заявляемый способ улучшения свойств инструментальных сталей содержит следующую совокупность существенных признаков: тройную фазовую перекристаллизацию при нагреве со скоростью 30-70°С/ч до температуры выше точки Аc3 на 30-80°С, выдержку при данной температуре, регламентированное охлаждение со скоростью не более 40°С/ч до температуры ниже точки Ar1 на 20-80°С, выдержку при данной температуре и последующее охлаждение до 400°С со скоростью не более 40°С/ч, затем на воздухе.

По отношению к прототипу у предлагаемого способа имеются следующие отличительные признаки: стали подвергают процессу тройной фазовой перекристаллизации путем нагрева со скоростью 30-70°С/ч выше точки Аc3 на 30-80°С, выдержки при данной температуре, затем охлаждают со скоростью не более 40°С/ч до температуры ниже точки Ar1 на 20-80°С, выдерживают при данной температуре с последующим охлаждением до 400°С со скоростью не более 40°С/ч, окончательное охлаждение выполняют на воздухе.

Между отличительными признаками и решаемой задачей существует следующая причинно-следственная связь, которая подтверждается данными, приведенными в таблицах 1 и 2. Выбор граничных значений параметров нагрева выше точки Аc3 на 30-80°С со скоростью 30-70°С/ч обусловлен получением в структуре инструментальных сталей мелкозернистого аустенита с отдельными нерастворившимися карбидными частицами, препятствующими росту зерна, и низким уровнем остаточных напряжений. Последующее охлаждение ниже точки Аr1 на 20-80°С со скоростью не более 40°С/ч приводит к распаду аустенита по перлитному механизму с образованием сфероидизированных избыточных карбидов и зернистого сорбита. Для более полного измельчения зерна аустенита и сфероидизации карбидов этот процесс повторяется трижды.

Нагрев до более низкой температуры, ниже, чем температура (Аc3+30)°С, значительно удлиняет время выдержки для образования структуры аустенита, что экономически нецелесообразно. Высокотемпературный нагрев выше температуры (Аc3+80)°С приводит к увеличению размера отдельных зерен аустенита, рост которых не заторможен избыточными карбидными частицами. Это предопределяет образование разнозернистости и увеличивает разброс свойств на готовом инструменте, особенно ударной вязкости, хотя в структуре будет наблюдаться зернистый сорбит.

Ограничение скорости нагрева интервалом 30-70°С/ч является оптимальным и связано с образованием термических и структурных напряжений, а также с экономическими соображениями. Невысокие скорости нагрева менее 30°С/ч приводят к необоснованно длительному времени нагрева инструментальных сталей. Нагрев со скоростью более 70°С/ч создает значительный градиент температур между центром и поверхностью изделия, что обуславливает высокий уровень термических и структурных напряжений, приводящих к короблению изделий или даже к трещинам.

Охлаждение нагретых заготовок под инструмент ниже температуры точки Аr1 на 20-80°С создает термодинамические условия для распада аустенита по перлитному механизму, а выдержка при этой температуре обеспечивает получение зернистых структур. Малая степень переохлаждения меньше 20°С из-за низкого выигрыша объемной свободной энергии, несмотря на высокую диффузионную подвижность атомов, существенно замедляет перлитный распад. Более высокие степени переохлаждения выше 80°С также приводят к торможению распада аустенита на перлит из-за снижения при низких температурах диффузионных перераспределений, особенно атомов легирующих элементов, образующих твердые растворы замещения в феррите.

Скорость охлаждения не более 40°С/ч в интервале температур от точки Аc3 до точки Аr1 способствует дополнительной сфероидизации карбидных частиц, выделению их в дисперсной форме, а также снижению термических и структурных напряжений. Охлаждение после изотермической выдержки ниже температуры Аr1 минус 20-80°С выполняют со скоростью не более 40°С/ч до 400°С. Регламентирование скорости охлаждения связано с условиями получения структуры зернистого перлита и снижением уровня остаточных напряжений в заготовках при их охлаждении. Скорость охлаждения ниже температуры 400°С не регламентируется, так как структура сталей в интервале 400-20°С (комнатная) не претерпевает существенных изменений, поэтому заготовки охлаждаются на воздухе.

Как показали результаты опытной проверки, при использовании заявляемого способа обеспечивается достижение следующих показателей:

- измельчение зерна аустенита при фазовой перекристаллизации не ниже 8 балла ГОСТ 5639;

- повышение механических свойств заготовок, в том числе ударной вязкости, до KCU=40-45 Дж/см2.

Выполнение заданных режимов и испытание механических свойств были проведены на стали 3Х3М3ФШ (ГОСТ 5950). Скорости нагрева, равные 30-70°С/ч, до температуры выше точки Аc3 на 30-80°С достигались путем посада заготовок в предварительно нагретую печь, температура которой зависела от объема садки и регулировалась включением и выключением нагрева. Охлаждение заготовок штамповых сталей с температур Аc3+ (30 -80)°С и Аr1 минус 20-80°С со скоростью не более 40°С/ч было выполнено с печью с выключенным обогревом.

Таблица 1 Параметры получения заготовок стали 3Х3М3ФШ и размер зерна аустенита Пример Способ обработки Параметры обработки Перегрев выше Аc3, °С Vнагр выше Аc3, °С/ч Переохлаждение ниже Аr1, °С Vохл до 400°С, °С/ч Балл зерна аустенита ГОСТ 5939 1 Известный 350 - 40 - 7 2 Предлагаемый 30 30 20 40 9 3 Предлагаемый 50 50 50 40 11 4 Предлагаемый 80 70 80 40 10 5 За пределами предлагаем. 10 20 10 20 4 6 100 90 100 100 6 * Балл зерна аустенита замерялся на трех образцах по пяти полям зрения микроскопа с выполнением пятнадцати замеров

Таблица 2 Механические свойства заготовок Пример* Механические свойства σв, МПа σ0,2, МПа δ, % KCU, Дж/см2 1 1740 1550 9,6 30,5 2 1820 1630 10,6 41,3 3 1850 1780 12,4 50,7 4 1760 1680 10,8 45,6 5 1660 1540 8,2 14,8 6 1720 1600 9,5 23,7 *Номер примера и режимы термической обработки соответствуют таблице 1

Похожие патенты RU2371488C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ЦЕЛЬНОКАТАНЫХ ЖЕЛЕЗНОДОРОЖНЫХ КОЛЕС 1997
  • Сидоров И.П.
  • Антипов Б.Ф.
  • Королев С.А.
  • Тарасова В.А.
  • Яндимиров А.А.
  • Баринова Г.П.
  • Волков А.М.
RU2133286C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЗАГОТОВОК ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ 2020
  • Евдокимов Александр Иванович
  • Киселев Алексей Николаевич
RU2738870C1
СПОСОБ ОБРАБОТКИ СТАЛЕЙ 2000
  • Зарипова Р.Г.
  • Кайбышев О.А.
  • Салищев Г.А.
  • Фархутдинов К.Г.
RU2181776C2
СПОСОБ КОМПЛЕКСНОЙ ТЕРМИЧЕСКОЙ ОБРАБОТКИ КРУПНОГАБАРИТНЫХ ПОКОВОК 2003
  • Грекова И.И.
  • Теплухина И.В.
  • Титова Т.И.
  • Филимонов Г.Н.
  • Цуканов В.В.
  • Шульган Н.А.
RU2235791C1
СПОСОБ КОМПЛЕКСНОЙ ТЕРМИЧЕСКОЙ ОБРАБОТКИ КРУПНОГАБАРИТНЫХ КОВАНЫХ ЗАГОТОВОК ИЗ ХРОМОМОЛИБДЕНОВАНАДИЕВОЙ СТАЛИ 2010
  • Титова Татьяна Ивановна
  • Шульган Наталья Алексеевна
  • Семернина Ирина Федоровна
  • Беньяминова Яна Юрьевна
  • Теплухина Ирина Владимировна
  • Баландин Сергей Юрьевич
  • Гордиенков Юрий Степанович
  • Чугунов Николай Анатольевич
RU2431686C1
СПОСОБ ТЕРМОЦИКЛИЧЕСКОЙ ОБРАБОТКИ СТАЛЕЙ 2017
  • Комоликов Алексей Сергеевич
  • Калинин Сергей Александрович
  • Козырь Игорь Григорьевич
  • Кузенков Сергей Евгеньевич
RU2646180C1
СПОСОБ ТЕРМОЦИКЛИЧЕСКОЙ ОБРАБОТКИ СТАЛИ 2015
  • Козырь Игорь Григорьевич
  • Комоликов Алексей Сергеевич
RU2594925C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МАССИВНЫХ МЕТАЛЛУРГИЧЕСКИХ НОЖЕЙ ИЗ СТАЛЕЙ ПЕРЛИТНОГО КЛАССА 1991
  • Панасенко Л.И.
  • Руфанов Ю.Г.
  • Савченко Л.А.
  • Костенко А.А.
  • Шпортько А.Ю.
  • Козодаев Е.Г.
  • Калашникова Д.П.
RU2037533C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЛИТЫХ ДЕТАЛЕЙ ИЗ НИЗКОЛЕГИРОВАННЫХ И УГЛЕРОДИСТЫХ СТАЛЕЙ 2015
  • Дегтярев Александр Федорович
  • Егорова Марина Александровна
  • Назаратин Владимир Васильевич
  • Повеквечных Сергей Алексеевич
  • Лазарев Виктор Васильевич
RU2672718C2
СПОСОБ ТЕРМОЦИКЛИЧЕСКОЙ ОБРАБОТКИ НИЗКОЛЕГИРОВАННЫХ И УГЛЕРОДИСТЫХ СТАЛЕЙ 1996
  • Лебедев В.В.
  • Ривкин С.И.
  • Животовская Т.В.
  • Щагина Н.Е.
  • Сафронова А.А.
  • Ефимова В.И.
RU2135605C1

Реферат патента 2009 года СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИНСТРУМЕНТАЛЬНЫХ ШТАМПОВЫХ СТАЛЕЙ

Изобретение относится к области металлургии, в частности к термической обработке заготовок из инструментальных штамповых сталей, используемых при изготовлении прессовой оснастки, работающей при высоких температурах. Стальную заготовку подвергают процессу тройной фазовой перекристаллизации путем нагрева со скоростью 30-70°С/ч выше точки Ас3 на 30-80°С, выдержки при данной температуре, затем заготовку охлаждают со скоростью не более 40°С/ч до температуры ниже точки Ar1 на 20-80°С, выдерживают при данной температуре с последующим охлаждением до 400°С со скоростью не более 40°С/ч, окончательное охлаждение выполняют на воздухе. Технический результат заключается в получении повышенных механических свойств заготовок сталей. 2 табл.

Формула изобретения RU 2 371 488 C1

Способ термической обработки заготовок из инструментальных штамповых сталей, включающий нагрев заготовок, выдержку при температуре нагрева, охлаждение и окончательное охлаждение, отличающийся тем, что сталь подвергают тройной фазовой перекристаллизации, при этом нагрев заготовок ведут со скоростью 30-70°С/ч до температуры Ас3+(30-80)°С, охлаждение после выдержки осуществляют со скоростью не более 40°С/ч до температуры Ar1-(20-80)°С, выдерживают при данной температуре с последующим охлаждением до 400°С со скоростью не более 40°С/ч, а окончательное охлаждение выполняют на воздухе.

Документы, цитированные в отчете о поиске Патент 2009 года RU2371488C1

Способ закалки молотовых штампов 1983
  • Гоголь Алла Борисовна
  • Маркуца Алла Алексеевна
  • Чикаленко Григорий Андреевич
  • Мальцева Людмила Николаевна
  • Иващенко Юрий Федорович
SU1177365A1
Способ термической обработки заэвтектоидной стали 1982
  • Биронт Виталий Семенович
SU1102815A1
Способ термической обработки стали 1982
  • Мухамедов Азод Анварович
  • Якубов Февзи Якубович
  • Херсонский Анатолий Кельманович
  • Мухамедов Анвар Акбарович
SU1133306A1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ВЫСОКОХРОМИСТОЙ ИНСТРУМЕНТАЛЬНОЙ СТАЛИ НА ВТОРИЧНУЮ ТВЁРДОСТЬ 2001
  • Околович Г.А.
  • Евтушенко А.Т.
  • Охрименко С.А.
  • Семенчина А.С.
RU2200201C2

RU 2 371 488 C1

Авторы

Богданова Татьяна Александровна

Алферов Владимир Николаевич

Перебоева Августа Алексеевна

Окладникова Нина Васильевна

Третьякова Людмила Павловна

Биронт Виталий Семенович

Вершинин Валерий Васильевич

Сапарова Анастасия Сергеевна

Даты

2009-10-27Публикация

2008-10-28Подача