СПОСОБ ПОЛУЧЕНИЯ ПРОПИЛЕНОКСИДА ИЗ ПРОПИЛЕНА И ПЕРОКСИДА ВОДОРОДА Российский патент 2009 года по МПК C07D301/12 

Описание патента на изобретение RU2372343C1

Изобретение относится к химической технологии основного органического синтеза, конкретно к промышленному производству пропиленоксида из пропилена и пероксида водорода на гетерогенном катализаторе в органическом растворителе.

В реакторе эпоксидирования для снижения скорости дезактивации катализатора, получения хорошей производительности и высокой селективности рекомендуют поддерживать температуру 45-80°С [патент 2247118 RU, МПК7 C07D 301/12, C07D 303/04, опубл. 2005.02.27].

Известен способ эпоксидирования олефинов пероксидом водорода в реакционной системе непрерывного действия, в котором реакционную смесь пропускают через неподвижный каталитический слой внутри реактора, оборудованного охлаждающим средством [патент 2290399 RU, МПК7 C07D 301/12, опубл. 2006.12.27]. По данному способу максимальная температура внутри каталитического слоя не превышает 60°С, давление внутри реактора поддерживают предпочтительно от 1,5 до 2,5 МПа, органическим растворителем является метанол, олефином - пропилен. Для ограничения указанной максимальной температуры поток охлаждающей среды регулируют таким образом, чтобы поддерживать разницу температур охлаждающей среды на входе в охлаждающее устройство и на выходе из него меньше 5°С, предпочтительнее меньше 3°С, наиболее предпочтительно меньше 2°С. Недостатком способа является необходимость подачи большого потока охлаждающей среды. Поскольку тепловой эффект процесса жидкофазного эпоксидирования составляет 220 кДж/моль пропиленоксида, то при получении 1,0 тонны пропиленоксида (17,22 кмоль) необходимо отвести 3,79 ГДж тепловой энергии. В результате расход охлаждающей воды при наиболее предпочтительной разнице ее температур на входе и выходе 2°С составит 452 м3 на 1 т пропиленоксида.

Данный недостаток отсутствует у реактора с псевдоожиженным слоем катализатора кожухотрубчатого типа с потоком охлаждающего теплоносителя в межтрубном пространстве или емкостного типа со встроенными теплообменными устройствами [патент 2272032 RU, МПК7 C07D 301/12, B01J 21/20, опубл. 2006.03.20]. Однако катализатор в псевдоожиженном слое механически истирается, и его потери за год (8000 часов работы) могут достигать 30%.

Известны способы эпоксидирования в две и более ступени с промежуточным выделением пропиленоксида методом ректификации [патент 2256656 RU, МПК7 C07D 301/12, C07D 301/32, опубл. 2005.07.2]; [патент 2259362 RU, МПК7 C07D 301/12, C07D 301/32, опубл. 2005.08.27]; [патент 2290400 RU, МПК7 C07D 301/12, C07D 301/19, C07D 301/32, B01J 19/00, B01J 29/89, опубл. 2006.12.27]. Основным недостатком таких способов является наличие операций разделения промежуточных реакционных масс дистилляции, которые существенно усложняют технологию и повышают энергозатраты. Это обусловлено тем, что пропиленоксид по температуре кипения (+35°С при нормальных условиях) занимает промежуточное положение между пропиленом (-47,8°С), который подают в избытке, и растворителем, например, метанолом (+64,7°С).

Известен способ эксплуатации установки для эпоксидирования олефина (варианты) [патент 2205181 RU, МПК7 C07D 301/142, C07D 301/04, опубл. 2003.05.27] (прототип). Пропиленоксид по данному способу получают в каскаде из 3-5 адиабатических реакторов с неподвижным слоем катализатора при предпочтительном мольном соотношении пероксида водорода к пропилену от 1:5 до 1:20 и температуре 40-80°С. Необходимую температуру поддерживают путем охлаждения реакционной массы в промежуточных теплообменных аппаратах. В качестве растворителя используют метанол или изопропанол, катализатором является силикалит титана.

Существенным недостатком способа является необходимость использования большого числа реакторов и теплообменников при эпоксидировании пропилена гидропероксидом водорода.

Целью данного изобретения является уменьшение необходимого количества аппаратов.

Поставленная цель достигается тем, что эпоксидирование пропилена пероксидом водорода ведут при температуре кипения реакционной массы, реакционное тепло отводят путем циркуляции реакционной массы и конденсации паров пропилена, и процесс эпоксидирования ведут при повышении температуры от реактора к реактору путем уменьшения концентрации пропилена в реакционной массе и изменения давления.

При этом на последней ступени эпоксидирования предпочтительно используют адиабатический реактор колонного типа со струйным или пленочным режимом движения жидкости по поверхности катализатора.

Кроме того, пропилен из сдувок процесса эпоксидирования, содержащих пропилен и кислород, абсорбируют органическим растворителем, используемым в процессе эпоксидирования.

В качестве органического растворителя используют метанол и другие, указанные в прототипе вещества, хорошо растворяющие пропилен, воду и химически относительно инертные по отношению к пероксиду водорода и пропиленоксиду.

Реакционное тепло отводят путем циркуляции реакционной массы и конденсации паров пропилена в выносном или встроенном теплообменнике-конденсаторе или обратном конденсаторе.

Реакторы могут быть с частично или полностью взвешенными частицами катализатора восходящим парожидкостным потоком и/или с катализатором, который нанесен на неподвижный высокопористый ячеистый материал, через который в одном или противоположном направлениях движутся потоки жидкости и пара.

В качестве катализатора используют силикалит титана, методы получения которого описаны в публикации [С.М.Данов, А.В.Сулимов, А.Е.Федосов. Катализаторы на основе силикалита титана для селективного жидкофазного окисления органических соединений пероксидом водорода. Сообщение 1. Основные методы получения. // Катализ в промышленности, 2007, №6, с.13-18].

На чертеже представлен вариант принципиальной схемы узла трехступенчатого каталитического эпоксидирования пропилена пероксидом водорода в органическом растворителе.

В таблице приведены данные о количестве основных материальных потоков в расчете на 1 т 100% пропиленоксида и их составы по примеру 1.

Узел эпоксидирования включает реакторы эпоксидирования 1, 2 и 3 с катализатором; теплообменники-конденсаторы 4 и 5, обратный конденсатор 6, циркуляционный компрессор 7, абсорбер пропилена из газовых сдувок 8.

В верхнюю секцию абсорбера 8 подают водный абсорбент 9, в среднюю секцию - органический растворитель 10, в нижнюю часть - газовые сдувки из реакторов эпоксидирования. В насыщенный абсорбент дозируют исходные потоки пропилена 11 и пероксида водорода 12, а затем полученную смесь 13 подают в реактор 1.

В реакторе 1 осуществляют процесс эпоксидирования при температуре кипения реакционной массы. Образовавшуюся парожидкостную смесь отводят в теплообменник-конденсатор 4, в котором парообразный пропилен конденсируют, а жидкость охлаждают на 2-15°С, предпочтительно на 3-5°С ниже температуры кипения. Охлажденный поток 14 возвращают в реактор. Необходимую концентрацию пропилена в реакторе и, соответственно, температуру процесса, регулируют давлением, поддерживают кратностью циркуляции и температурой потока 14.

Из реактора 1 первичную реакционную массу со степенью конверсии пероксида водорода на уровне 75%, поток 15, дросселируют и подают в реактор 2. В нем осуществляют вторую стадию эпоксидирования. Необходимый избыток пропилена к пероксиду водорода и режим кипения поддерживают температурой циркуляционного потока 16 и давлением. Промежуточную реакционную массу 17 со степенью конверсии пероксида водорода на уровне 95% подают в реактор 3.

На последней ступени эпоксидирования предпочтительно использовать адиабатический реактор 3 колонного типа со струйным или пленочным режимом движения жидкости по поверхности катализатора с обратным конденсатором 6. По длине реактора концентрация пропилена в реакционной массе из-за его испарения со свободной поверхности убывает, температура жидкости возрастает, что обеспечивает интенсивный расход остатков пероксида водорода и пропилена. Полученную реакционную массу 18 со степенью конверсии пероксида водорода на уровне 99% направляют на узел ректификации, где из нее выделяют товарный пропиленоксид и регенерируют органический растворитель.

В потоки 14, 16 и 17 вводят, при необходимости, дополнительные вещества, корректирующие, например, рН реакционной массы или стабилизирующие температурный режим.

В ходе эпоксидирования небольшая часть пероксида водорода распадается с образованием воды и молекулярного кислорода. Кислород и газообразный пропилен образуют газовые сдувки, которые выводят через верхние части теплообменников-конденсаторов 4, 5 и обратного конденсатора 6. Газовые сдувки из теплообменника-конденсатора 5 и обратного конденсатора 6 подают в циркуляционный компрессор 7. Сжатый поток 19 смешивают с газовыми сдувками из теплообменника-конденсатора 4, а затем объединенный поток 20 подают в нижнюю часть абсорбера 8.

Из газовых сдувок в нижней секции абсорбера 8 органическим растворителем абсорбируют пропилен, а в верхней секции водным абсорбентом улавливают пары органического растворителя. В качестве водного абсорбента используют воду, водный раствор малолетучих веществ, предпочтительно раствор пероксида водорода в количестве 2-5% от исходного подаваемого на эпоксидирование количества. В результате получают поток технического кислорода 21.

Узел ректификации включает, предпочтительно, три ректификационные колонны. В первой колонне при абсолютном давлении 0,5-1,0 МПа из реакционной массы удаляют пропилен, пропан и другие вещества с низкой температурой кипения. Во второй колонне при давлении 0,1-0,2 МПа выделяют товарный пропиленоксид. В третьей колонне при атмосферном давлении регенерируют органический растворитель. При необходимости узел ректификации может включать дополнительное оборудование для получения регенерированного растворителя необходимого качества.

Ниже представлены примеры осуществления данного способа, полученные по моделирующей программе ChemCAD в расчете на 1 т 100% пропиленоксида с учетом потерь на узле ректификации.

Пример 1 (по изобретению). На эпоксидирование подают 18,6 кмоль пероксида водорода в виде 40 мас.%. водного раствора, исходный пропилен 19,30 кмоль, а также возвратный пропилен 6,47 кмоль, растворенный в 200 кмолях метанола. В первом реакторе при абсолютном давлении 0,8 МПа и температуре 45°С на химические реакции расходуют 13,58 кмоль пропилена, 4,67 кмоль пропилена выводят с газовыми сдувками. Во второй реактор направляют 7,52 кмоль пропилена и 4,66 кмоль пероксида водорода. Изотермическое эпоксидирование ведут при давлении 0,24 МПа и температуре 52°С. В третий реактор подают 1,40 кмоль пропилена и 0,97 кмоль пероксида водорода. Адиабатическое эпоксидирование ведут при давлении 0,24 МПа, в процессе которого температура возрастает от 52 до 58°С. Газовые сдувки из второго и третьего реакторов в компрессоре сжимают до давления 1,0 МПа, смешивают с газовыми сдувками из первого реактора и направляют на абсорбцию. В абсорбере из объединенных газовых сдувок метанолом практически полностью улавливают пропилен, а небольшим потоком водного раствора пероксида водорода улавливают пары метанола. Этим потоком одновременно создают барьер между метанолом, который является легковоспламеняющейся жидкостью, и выделенным кислородом.

Массовые расходы показанных на чертеже основных потоков и их составы представлены в таблице.

Число основных аппаратов на стадии эпоксидирования составляет 8 единиц.

Пример 2 (сравнительный). Процесс ведут в каскаде из адиабатических реакторов с промежуточными теплообменниками при идентичных с примером 1 подачах исходных реагентов и растворителя, при их начальной температуре 45°С, но при давлении в реакторах 2,5 МПа для поддержания реакционной массы полностью в жидком состоянии. В каждом реакторе в реакцию вступает 1,86 кмоль пероксида водорода, температура реакционной массы повышается от 45 до 58°С. В промежуточных теплообменниках реакционную массу охлаждают до 45°С. Для достижения идентичной с примером 1 степени конверсии пероксида водорода требуется каскад, включающий 10 реакторов и 10 теплообменников.

Из примеров 1 и 2 следует, что проведение процесса эпоксидирования пропилена пероксидом водорода при температуре кипения реакционной массы по изобретению позволяет уменьшить число основных аппаратов по сравнению с прототипом в 2,5 раза.

Использование на последней ступени реактора со струйным или пленочным движением жидкости обеспечивает минимальное время пребывания реакционной массы в зоне с максимальной температурой 58°С, которая необходима для достижения полной конверсии пероксида водорода.

Абсорбция пропилена из газовых сдувок метанолом и последующая абсорбция паров метанола водным раствором пероксида водорода позволяет исключить потери пропилена и метанола с потоком побочно образующегося кислорода.

Таблица Расход на 1 т 100% пропиленоксида и массовый состав материальных потоков по примеру 1 Наименование параметра Величина для потока 9 10 11 12 13 15 17 18 19 20 21 Общий расход, кг/т 33,42 6462,4 826,3 1519,8 9251,7 8999,9 8835,3 8824,7 175,1 427,0 7,61 Состав, мас.% кислород 0,16 0,01 0,01 1,48 4,80 99,85 пропилен 99,46 11,72 3,52 0,67 0,30 49,81 65,16 0,00 пропан и др. 0,54 0,26 0,16 0,06 0,06 4,66 4,18 пропиленоксид 0,83 9,17 11,01 11,45 31,12 17,62 метанол 99,16 69,63 71,49 72,82 72,88 13,05 7,73 0,04 вода 59,27 0,84 59,27 10,56 13,56 14,57 14,76 0,88 0,51 0,11 пероксид водорода 40,73 40,73 6,84 1,77 0,37 0,04 пропандиол и др. 0,32 0,50 0,50

Похожие патенты RU2372343C1

название год авторы номер документа
СПОСОБ ОЧИСТКИ ПРОПИЛЕНОКСИДА 2013
  • Го Сянбо
  • Ян Кэюн
  • Ван Цзинь
  • Линь Минь
RU2639872C2
СПОСОБ ПОЛУЧЕНИЯ ПЕРОКСИДА ВОДОРОДА ОКИСЛЕНИЕМ ИЗОПРОПАНОЛА 2008
  • Савельев Алексей Николаевич
  • Савельев Николай Иванович
RU2356831C1
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА ПРОПИЛЕНА 2011
  • Лаврентьев Иван Анатольевич
  • Луговской Сергей Анатольевич
  • Нагродский Михаил Иосифович
  • Никущенко Наталья Трофимовна
  • Михайлова Татьяна Алексеевна
  • Потехин Вячеслав Вячеславович
RU2472786C1
СПОСОБ ПОЛУЧЕНИЯ ТЕТРАХЛОРЭТИЛЕНА ИЗ ХЛОРОРГАНИЧЕСКИХ ОТХОДОВ C-C 2006
  • Агафонов Борис Александрович
  • Савельев Алексей Николаевич
  • Савельев Николай Иванович
RU2313514C1
СПОСОБ ПРОИЗВОДСТВА ПРОПИЛЕНОКСИДА 2010
  • Кампе Филип
  • Реш Петер
  • Чин Су Йин
  • Басслер Петер
  • Мюллер Ульрих
  • Шиндлер Гетц-Петер
  • Геббель Ханс-Георг
  • Телес Иоаким Энрике
  • Гумлих Кай
  • Грасслер Томас
  • Бартош Кристиан
  • Якубинас Рихард
  • Вайденбах Майнольф
RU2529859C2
СПОСОБ ВЫДЕЛЕНИЯ КОНЦЕНТРИРОВАННОГО ЭПИХЛОРГИДРИНА ИЗ ПРОДУКТОВ ЭПОКСИДИРОВАНИЯ ХЛОРИСТОГО АЛЛИЛА ПЕРОКСИДОМ ВОДОРОДА НА ТИТАНСОДЕРЖАЩЕМ ЦЕОЛИТНОМ КАТАЛИЗАТОРЕ 2015
  • Лукин Пётр Матвеевич
  • Мухортова Любовь Ивановна
  • Савельев Алексей Николаевич
  • Савельев Николай Иванович
RU2593205C1
СПОСОБ ПОЛУЧЕНИЯ ПРОПИЛЕНОКСИДА 2011
  • Телес Йоаким Хенрике
  • Гумлих Кай
  • Басслер Петер
  • Бартош Кристиан
  • Кампе Филип
  • Геббель Ханс-Георг
  • Мюллер Ульрих
  • Якубинас Ричард
RU2588575C2
СПОСОБ ДЛЯ ПРОИЗВОДСТВА ПРОПИЛЕНОКСИДА 2017
  • Коике, Хирофуми
  • Кавабата, Томонори
  • Такемото, Такуо
  • Накамура, Мотоси
  • Такемото, Сатору
RU2738231C2
Способ очистки оксида пропилена от примесей карбонильных и карбоксильных соединений 2019
  • Дронов Сергей Вячеславович
  • Клементьев Василий Николаевич
  • Кулагин Андрей Михайлович
  • Луговской Сергей Анатольевич
  • Потехин Вячеслав Вячеславович
RU2722835C1
СПОСОБ ЭПОКСИДИРОВАНИЯ ПРОПЕНА 2006
  • Геббель Ханс-Георг
  • Басслер Петер
  • Телеш Жоаким Энрике
  • Рудольф Петер
  • Мюллер Ульрих
  • Форлин Анна
  • Шульц Мальте
  • Вайденбах Майнольф
RU2388755C2

Реферат патента 2009 года СПОСОБ ПОЛУЧЕНИЯ ПРОПИЛЕНОКСИДА ИЗ ПРОПИЛЕНА И ПЕРОКСИДА ВОДОРОДА

Изобретение относится к химической технологии основного органического синтеза, конкретно к производству пропиленоксида из пропилена и пероксида водорода в органическом растворителе с использованием гетерогенного катализатора в каскаде последовательных реакторов с отводом реакционного тепла из реакторов эпоксидирования и разделением полученной реакционной массы ректификацией. В соответствии с изобретением эпоксидирование ведут при температуре кипения реакционной массы, реакционное тепло отводят путем циркуляции реакционной массы и конденсации паров пропилена, и процесс эпоксидирования ведут при повышении температуры реакции от реактора к реактору путем уменьшения концентрации пропилена в реакционной массе и изменения давления. Технический результат - уменьшение числа основных реакторов в два раза. 2 з.п. ф-лы, 1 ил., 1 табл.

Формула изобретения RU 2 372 343 C1

1. Способ получения пропиленоксида путем эпоксидирования пропилена пероксидом водорода на гетерогенном катализаторе в присутствии органического растворителя в каскаде последовательных реакторов, включающий отвод реакционного тепла из реакторов эпоксидирования и разделение полученной реакционной массы ректификацией, отличающийся тем, что эпоксидирование ведут при температуре кипения реакционной массы, реакционное тепло отводят путем циркуляции реакционной массы и конденсации паров пропилена, процесс эпоксидирования ведут при повышении температуры от реактора к реактору путем уменьшения концентрации пропилена в реакционной массе и изменения давления.

2. Способ по п.1, отличающийся тем, что на последней ступени эпоксидирования используют адиабатический реактор колонного типа со струйным или пленочным режимом движения жидкости по поверхности катализатора.

3. Способ по п.1, отличающийся тем, что конденсацию паров пропилена проводят в выносных или обратных конденсаторах, из которых выводят сдувки процесса эпоксидирования, содержащие пропилен и кислород, и пропилен из сдувок абсорбируют органическим растворителем, используемым в процессе эпоксидирования.

Документы, цитированные в отчете о поиске Патент 2009 года RU2372343C1

СПОСОБ ЭКСПЛУАТАЦИИ УСТАНОВКИ ДЛЯ ЭПОКСИДИРОВАНИЯ ОЛЕФИНА (ВАРИАНТЫ) 1998
  • Джабин Джон К. Мл.
  • Деннер Джеффри Б.
RU2205181C2
СПОСОБ ЭПОКСИДИРОВАНИЯ ОЛЕФИНОВ 2002
  • Хаас Томас
  • Хофен Вилли
  • Зауер Йёрг
  • Тиле Георг
RU2291152C2
Прибор, замыкающий сигнальную цепь при повышении температуры 1918
  • Давыдов Р.И.
SU99A1
Устройство для управления успокоителем качки судна 1977
  • Ляпин Вячеслав Иванович
  • Ермаченко Юрий Николаевич
SU679473A1

RU 2 372 343 C1

Авторы

Савельев Алексей Николаевич

Савельев Николай Иванович

Даты

2009-11-10Публикация

2008-03-03Подача