СПОСОБ ПОЛУЧЕНИЯ СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИАКРИЛОНИТРИЛА Российский патент 2009 года по МПК C08F120/44 C08F20/44 

Описание патента на изобретение RU2376319C2

Изобретение относится к технологии получения сверхвысокомолекулярных волокнообразующих полимеров, которые могут служить сырьем для получения сверхпрочных и высокомодульных углеродных волокон.

Полиакрилонитрил (ПАН) является важнейшим промышленным полимером, который широко известен как волокнообразующий полимер. Промышленное производство ПАН основано на использовании процессов полимеризации, протекающих по свободно-радикальному механизму. Основным и наиболее существенным недостатком этих процессов является протекание неизбежных побочных реакций, приводящих к образованию полидисперсных (неоднородных) полимеров со сравнительно низкими средними молекулярными массами. Эти методы не могут обеспечить образование монодисперсных линейных полимеров с молекулярными массами, приближающимися к 500·103.

Современные методы контролируемой "живой" радикальной полимеризации и методы ARGET ATRP (Activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP), разработанные в лабораторных условиях, позволяют получать ПАН с молекулярной массой около 100·103 и полидисперсностью Mw/Mn менее 1.5 [Min К., Gao H., Matyjaszewski К. // Macromolecules. 2007. V.40. №8. P.1789.]. Полимеры с более высокими молекулярными массами до 280·103, которые могут быть также получены этими способами, обладают более высокой полидисперсностью Mw/Mn=1.8 [Dong H., Tang W., Matyjaszewski К. // Macromolecules. 2007. V.40. №9. P.2974.] К недостатками методов ARGET ATRP также относится необходимость соблюдения специальных экспериментальных условий и использования сложных комплексных инициаторов. Полимеризация акрилонитрила протекает медленно (до 288 час) и только при высокой температуре (65°С) в среде диметилсульфоксида или этиленкарбоната. Даже при этих условиях конверсия мономера не бывает полной (от 50 до 70%).

Наиболее близким по технической и химической сущности является известный способ получения высокомолекулярного ПАН с молекулярной массой более 300·103 методом анионной полимеризации акрилонитрила в среде диметилформамида под действием алкоголятов лития (производных металлического лития и различных спиртов) [Коротков А.А., Красулина В.Н., Новоселова А.В. Авторское свидетельство №227582 СССР. // Бюллетень изобретений. 1974. №25. С.174.]. Недостатки этого метода заключаются в необходимости поддержания в течение всего процесса низких температур в реакционной смеси (-60°С), чтобы снизить роль реакций обрыва цепей, интенсивно протекающих при резком выделении тепла во время полимеризации; в трудоемкости при синтезе, очистке и приготовлении растворов инициаторов; в нестабильности инициаторов при хранении (разложение). Существенными недостатками являются также очень высокие скорости процессов, не позволяющие осуществлять контроль за полимеризацией, а также осложнения, связанные с образованием гелеобразных растворов (студней) и с процессами циклизации нитрильных групп ПАН под действием избытка инициатора после завершения полимеризации.

Технической задачей и технологическим результатом данного изобретения является разработка метода синтеза высокомолекулярного ПАН с молекулярной массой до 840·103, который может быть рекомендован в качестве сырья для получения сверхпрочных и высокомодульных углеродных волокон. К технологическим результатам следует также отнести оптимизацию условий подготовки реагентов и проведения укрупненных синтезов ПАН в лабораторных условиях. Используется легкий и удобный способ получения анионного инициатора 1,2-бис(диэтиламино)-2-оксоэтанолата лития путем взаимодействия металлического лития с диметилформамидом в атмосфере инертного газа. После отстаивания реакционной смеси раствор сразу же может быть использован для инициирования полимеризации. Найдена возможность проведения полимеризации при высокой концентрации мономера (до 2.8 моль/л) в условиях умеренно низких температур (до -20°С). При этом удается максимально ограничить протекание побочных реакций и избежать процессов циклизации и гелеобразования.

Указанная техническая задача и положительный результат в изобретении достигается за счет того, что для реализации процессов используют свежеперегнанные растворитель (диметилформамид) и мономер (акрилонитрил), используют инициатор - 1,2-бис(диэтиламино)-2-оксоэтанолат лития в виде раствора в диметилформамиде, концентрацию мономера и инициатора варьируют в пределах 2.0-2.8 моль/л и (0.6-1)·10-3 моль/л соответственно, проводят процессы полимеризации в атмосфере инертного газа, начальную температуру процессов поддерживают в интервале от -50 до -20°С. После завершения полимеризации и дезактивации смеси получают готовые бесцветные высоковязкие растворы полимера. Полимеры выделяют высаживанием в воду, отделяют фильтрованием, затем промывают водой и высушивают при 60°С.

Для реализации процессов используют следующие компоненты и реагенты:

растворитель (диметилформамид) (350-460 мл);

мономер (акрилонитрил) (60-70 мл);

инициатор 1,2-бис(диэтиламино)-2-оксоэтанолат лития (1.6-2.6 мл, концентрация 0.2 моль/л);

дезактивирующая смесь 10 мл диметилформамида и уксусной кислоты (соотношение по объему 10:1);

осадитель - вода.

Используемые количества реагентов и выбранные условия позволяют получить непосредственно после проведения реакции бесцветный раствор полимера с высокой вязкостью.

Способ получения сверхвысокомолекулярного ПАН раскрывается далее на приводимых примерах его осуществления.

Пример 1. В двугорлую колбу, снабженную механической мешалкой, в атмосфере аргона вливают предварительно выдержанные над гидридом кальция и свежеперегнанные растворитель - диметилформамид 390 мл и мономер - акрилонитрил 65 мл (0.98 мол). Смесь охлаждают при энергичном перемешивании до температуры -50°С и быстро вводят с помощью прибора Шленка раствор инициатора с концентрацией 0.2 моль/л в количестве 2.3 мл (0.46·10-3 мол). Концентрация мономера и инициатора в смеси составляют 2.5 моль/л и 1·10-3 моль/л соответственно. Через 20 с реакционную смесь дезактивируют введением 10 мл смеси диметилформамида и уксусной кислоты (соотношение по объему 10:1). Полимер выделяют высаживанием в воду, промывают водой на фильтрах Шотта и сушат при 60°С. Выход полимера 52 г (100%). Характеристическая вязкость [η]=5.5, средневязкостная молекулярная масса M[η]=700·103.

Пример 2. Смесь растворителя и мономера готовят аналогично примеру 1 в атмосфере аргона. Используют 460 мл свежеперегнанного диметилформамида и 70 мл (1.06 мол) перегнанного акрилонитрила. Смесь охлаждают при энергичном перемешивании до температуры -50°С и быстро вводят с помощью шприца раствор инициатора с концентрацией 0.2 моль/л в количестве 1.6 мл (0.32·10-3 мол). Концентрация мономера и инициатора в смеси составляют 2.3 моль/л и 0.6·10-3 моль/л соответственно. Через 15 с реакционную смесь дезактивируют введением 10 мл смеси диметилформамида и уксусной кислоты. Полимер выделяют высаживанием в воду, промывают водой и сушат при 60°С. Выход полимера 56 г (100%). Характеристическая вязкость [η]=6.0, средневязкостная молекулярная масса М[η]=800·103.

Пример 3. Смесь растворителя и мономера готовят аналогично примеру 1 в атмосфере аргона. Используют 450 мл свежеперегнанного диметилформамида и 60 мл (0.91 мол) перегнанного акрилонитрила. Смесь охлаждают при энергичном перемешивании до температуры -40°С и быстро вводят с помощью прибора Шленка раствор инициатора с концентрацией 0.2 моль/л в количестве 2.6 мл (0.52·10-3 мол). Концентрация мономера и инициатора в смеси составляют 2.0 моль/л и 1·10-3 моль/л соответственно. Через 1 мин реакционную смесь дезактивируют введением 10 мл смеси диметилформамида и уксусной кислоты. Полимер выделяют высаживанием в воду, промывают водой на фильтрах Шотта и сушат при 60°С. Выход полимера 48 г (100%). Характеристическая вязкость [η]=5.0, средневязкостная молекулярная масса M[η]=570·103.

Пример 4. Смесь растворителя и мономера готовят аналогично примеру 1 в атмосфере аргона. Используют 420 мл свежеперегнанного диметилформамида и 69 мл (1.04 мол) перегнанного акрилонитрила. Смесь охлаждают при энергичном перемешивании до температуры -20°С и быстро вводят с помощью шприца раствор инициатора с концентрацией 0.2 моль/л в количестве 2.5 мл (0.50·10-3 мол). Концентрация мономера и инициатора в смеси составляют 2.5 моль/л и 1·10-3 моль/л соответственно. Через 1 мин реакционную смесь дезактивируют введением 10 мл смеси диметилформамида и уксусной кислоты. Полимер выделяют высаживанием в воду, промывают водой на фильтрах Шотта и сушат при 60°С. Выход полимера 46.9 г (85%). Характеристическая вязкость [η]=5.5, средневязкостная молекулярная масса

M[η]=650·103.

Пример 5. Смесь растворителя и мономера готовят аналогично примеру 1 в атмосфере аргона. Используют 350 мл свежеперегнанного диметилформамида и 65 мл (0.98 мол) перегнанного акрилонитрила. Смесь охлаждают при энергичном перемешивании до температуры -20°С и быстро вводят с помощью шприца раствор инициатора с концентрацией 0.2 моль/л в количестве 2.1 мл (0.42·10-3 мол). Концентрация мономера и инициатора в смеси составляют 2.8 моль/л и 1·10-3 моль/л соответственно. Через 1 мин реакционную смесь дезактивируют 10 мл смеси диметилформамида и уксусной кислоты (соотношение по объему 10:1). Полимер выделяют высаживанием в воду, промывают водой на фильтрах Шотта и сушат при 60°С. Выход полимера 41.6 г (80%). Характеристическая вязкость [η]=6.6, средневязкостная молекулярная масса М[η]=840·103.

Пример 6. Смесь растворителя и мономера готовят аналогично примеру 1 в атмосфере аргона. Используют 360 мл свежеперегнанного диметилформамида и 65 мл (0.98 мол) перегнанного акрилонитрила. Смесь охлаждают при энергичном перемешивании при 0°С, т.е при температуре, существенно превышающей температуру в примерах 1-5. Раствор инициатора с концентрацией 0.2 моль/л вводят с помощью шприца в количестве 2.1 мл (0.42·10-3 мол). Концентрация мономера и инициатора в смеси составляют 2.8 моль/л и 1·10-3 моль/л соответственно. Через 1 мин реакционную смесь дезактивируют 10 мл смеси диметилформамида и уксусной кислоты (соотношение по объему 10:1). Полимер выделяют высаживанием в воду, промывают водой на фильтрах Шотта и сушат при 60°С. Выход полимера 20.8 г (40%). Характеристическая вязкость [η]=2.15, средневязкостная молекулярная масса M[η]=195·103.

Изменение температурного режима процесса полимеризации при прочих равных условиях влечет за собой такие негативные последствия, как резкое снижение выхода полимерного продукта, уменьшение характеристической вязкости и молекулярной массы полимера, т.е. не позволяет осуществить получение полимера с характеристиками, отвечающими сверхмолекулярному ПАН. Аналогичное ухудшение характеристик образующихся полимеров наблюдается при выходе за пределы интервала использованных концентраций мономера (2.0-2.8) моль/л и инициатора (0.6-1)·10-3 моль/л.

Таким образом, экспериментально доказано, что эффективность предлагаемого метода существенно превосходит возможности известных способов получения ПАН и обеспечивает получение сверхвысокомолекулярных ПАН с молекулярными массами (570-840)·103 при осуществлении регламента получения полимеров в указанных интервалах концентраций реагентов и сопутствующих материалов, при выполнении рекомендаций при подготовке растворителя и мономера и при соблюдении указанного температурного режима.

Похожие патенты RU2376319C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СОПОЛИМЕРА АКРИЛОНИТРИЛА 2016
  • Гришин Иван Дмитриевич
  • Курочкина Дарья Юрьевна
  • Гришин Дмитрий Федорович
RU2627264C1
СПОСОБ ПОЛУЧЕНИЯ СОПОЛИМЕРА АКРИЛОНИТРИЛА 2018
  • Гришин Иван Дмитриевич
  • Стахи Сергей Анатольевич
RU2697882C1
Способ получения сополимеров акрилонитрила в растворе 2020
  • Черникова Елена Вячеславовна
  • Гервальд Александр Юрьевич
  • Прокопов Николай Иванович
  • Томс Роман Владимирович
  • Плуталова Анна Валерьевна
RU2734241C1
Способ получения олигомеров акрилонитрила и его соолигомеров в присутствии N-метилморфолин-N-оксида 2022
  • Куличихин Валерий Григорьевич
  • Черникова Елена Вячеславовна
  • Гервальд Александр Юрьевич
  • Прокопов Николай Иванович
  • Томс Роман Владимирович
  • Плуталова Анна Валерьевна
RU2798656C1
Способ получения сополимеров акрилонитрила в массе 2020
  • Черникова Елена Вячеславовна
  • Гервальд Александр Юрьевич
  • Прокопов Николай Иванович
  • Томс Роман Владимирович
  • Плуталова Анна Валерьевна
RU2734242C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИАКРИЛОНИТРИЛЬНЫХ НИТЕЙ И ЖГУТОВ, ПРИГОДНЫХ ДЛЯ ПРОИЗВОДСТВА ВЫСОКОПРОЧНЫХ УГЛЕРОДНЫХ ВОЛОКОН 1996
  • Серков А.Т.
  • Будницкий Г.А.
  • Медведев В.А.
  • Радишевский М.Б.
RU2122607C1
ВОЛОКНООБРАЗУЮЩИЙ СОПОЛИМЕР АКРИЛОНИТРИЛА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2009
  • Дуфлот Владимир Робертович
  • Китаева Наталья Константиновна
  • Поликарпов Владимир Васильевич
  • Касьянова Екатерина Александровна
  • Савинова Нина Семеновна
RU2422467C2
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОАКТИВНЫХ ПОЛИИЗОБУТЕНОВ 2003
  • Боненполль Мартин
  • Исмайер Юрген
  • Нуйкен Оскар
  • Фирле Марио
  • Шен Дирк Курт
  • Кюн Фритц
RU2308462C2
СПОСОБ ПОЛУЧЕНИЯ СОПОЛИМЕРОВ НА ОСНОВЕ АКРИЛОНИТРИЛА 1993
  • Фомин В.А.
  • Сивенков Е.А.
  • Синеокова О.А.
  • Радбиль Т.И.
RU2084463C1
Способ получения волокнообразующих (со)полимеров акрилонитрила 1979
  • Гольдфейн Марк Давидович
  • Рафиков Энвер Абдулхаевич
  • Степухович Александр Давидович
  • Зюбин Борис Алексеевич
SU927802A1

Реферат патента 2009 года СПОСОБ ПОЛУЧЕНИЯ СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИАКРИЛОНИТРИЛА

Изобретение относится к технологии получения сверхвысокомолекулярных волокнообразующих полимеров, которые могут служить сырьем для получения сверхпрочных и высокомодульных углеродных волокон. Описан способ получения сверхвысокомолекулярного полиакрилонитрила, основанный на использовании механизма анионной полимеризации, включающий подготовку исходных реагентов, синтез анионного инициатора, проведение процесса полимеризации, выделение и сушку полученного полимера, причем полимеризацию проводят в атмосфере аргона с использованием свежеперегнанных растворителя - диметилформамида в количестве 350-460 мл и мономера - акрилонитрила в количестве 60-70 мл, обеспечивают температурный режим процесса, создавая начальную температуру реакционной смеси -50÷-20°С, вводят количество инициатора 1,2-бис-диэтиламино-2-оксоэтанолата лития, не превышающее 0.52·10-3 молей, реакционную смесь дезактивируют через 15-60 с после начала процесса смесью диметилформамида и уксусной кислоты в соотношении по объему 10:1, полимер высаживают в воду, выделяют фильтрованием, промывают водой и сушат при температуре 60°С, получают полимер с выходом от 80 до 100% и характеристиками сверхвысокомолекулярного полиакрилонитрила.

Формула изобретения RU 2 376 319 C2

Способ получения сверхвысокомолекулярного полиакрилонитрила, основанный на использовании механизма анионной полимеризации, включающий подготовку исходных реагентов, синтез анионного инициатора, проведение процесса полимеризации, выделение и сушку полученного полимера, отличающийся тем, что полимеризацию проводят в атмосфере аргона с использованием свежеперегнанных растворителя - диметилформамида в количестве 350-460 мл и мономера - акрилонитрила в количестве 60-70 мл, обеспечивают температурный режим процесса, создавая начальную температуру реакционной смеси (-50)÷(-20)°С, вводят количество инициатора 1,2-бис-диэтиламино-2-оксоэтанолата лития, не превышающее 0,52·10-3 молей, реакционную смесь дезактивируют через 15-60 с после начала процесса смесью диметилформамида и уксусной кислоты в соотношении по объему 10:1, полимер высаживают в воду, выделяют фильтрованием, промывают водой и сушат при температуре 60°С, получают полимер с выходом от 80 до 100% и характеристиками сверхвысокомолекулярного полиакрилонитрила.

Документы, цитированные в отчете о поиске Патент 2009 года RU2376319C2

SU 227582 А, 05.07.1974
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИАКРИЛОНИТРИЛА 0
SU275393A1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИАКРИЛОННТРИЛА 0
  • Б. Л. Ерусалимский, И. В. Кулевска С. К. Камалов С. Я. Фйеи
  • Ггхь Пчгг Библиотека
  • Ьсш Глу
SU179925A1
Способ запрессовки не выдержавших гидравлической пробы отливок 1923
  • Лучинский Д.Д.
SU51A1

RU 2 376 319 C2

Авторы

Новоселова Анна Валентиновна

Шаманин Валерий Владимирович

Виноградова Людмила Викторовна

Даты

2009-12-20Публикация

2007-12-13Подача