СПОСОБ ОБРАБОТКИ МАГНИЕВЫХ СПЛАВОВ Российский патент 2009 года по МПК C22F1/06 

Описание патента на изобретение RU2376397C1

Изобретение относится к области авиационного и космического материаловедения и может быть использовано при изготовлении деформированных полуфабрикатов из магниевых сплавов, предназначенных для изделий авиационной, ракетокосмической техники и машиностроения (детали управления, детали кресел, несущие детали внутреннего набора: кронштейны, качалки, штамповки и др.).

Известен способ обработки магниевых сплавов, включающий нагрев магниевого сплава до температуры 250-600°C, выдержку при этой температуре в течение (1-100) часов, охлаждение сплава до температур (0-100)°C; прессование сплава при температуре от 200 до 500°C со степенью вытяжки не менее 1:10, охлаждение деформированного полуфабриката со скоростью не менее 300°C/мин до температур (0-100)°C (Заявка US №2003/0140992).

Недостатком известного способа является его длительность, трудоемкость и небезопасность. Реализация известного способа представляет опасность, поскольку нагрев сплавов до рекомендуемого верхнего предела в 600°C может привести к оплавлению и даже воспламенению структурной составляющей сплавов - эвтектики, что не позволяет применять указанный способ во всех интервалах рекомендуемых технологических параметров для получения деформированных полуфабрикатов. Это значительно затрудняет изготовление из них качественных изделий, обладающих требуемыми прочностными и пластическими свойствами, ввиду опасности возможного пережога.

Известен способ обработки магниевых сплавов, включающий нагрев, ступенчатую деформацию и охлаждение, в котором нагрев проводят до 280-360°C, деформацию проводят, по крайней мере, с одним дополнительным переходом, при этом все переходы деформации проводят с одного нагрева непрерывно друг за другом со скоростью (2·10-1-6·10-2) с-1 и суммарной степенью деформации 88-93%, а охлаждение осуществляют на воздухе (патент РФ №2148104).

К недостаткам этого способа следует отнести малый уровень предела текучести и значительную анизотропию прочностных свойств деформированных полуфабрикатов, что служит препятствием к изготовлению из них изделий, работающих в условиях действия нагрузки в поперечном направлении по отношению к волокну.

Наиболее близким аналогом, взятым за прототип, является способ обработки магниевых сплавов, включающий нагрев литой заготовки, ступенчатую деформацию и охлаждение на воздухе, в котором нагрев заготовки до 280-420°C проводят перед каждым переходом ступенчатой деформации, ступенчатую деформацию заготовки осуществляют с суммарной степенью деформации 94-99,5%, а после охлаждения заготовки на воздухе проводят окончательный нагрев до 370-420°C в изотермических условиях и окончательную деформацию со скоростью (1·10-4-2·10-2) с-1 (патент РФ №2213800).

Основными недостатками прототипа являются:

- получение материала с недостаточно высокими характеристиками прочности и пластичности;

- невысокая коррозионная стойкость получаемых деформированных полуфабрикатов магниевых сплавов и изделий из них.

Технической задачей изобретения является разработка способа, позволяющего повысить прочность, пластичность и коррозионную стойкость деформированных полуфабрикатов из магниевых сплавов при сохранении малой анизотропии прочностных свойств (не более 10-11%).

Поставленная техническая задача достигается тем, что предложен способ обработки магниевых сплавов, включающий нагрев литой заготовки, двухступенчатую деформацию и охлаждение на воздухе, в котором вторую ступень деформации проводят в изотермических условиях при температуре на (50-100)°C ниже температуры первой ступени со скоростью 4·10-2-5·10-1 c-1 и с суммарной степенью деформации 65-85%, а между первой и второй ступенями деформации проводят термическую обработку при температуре 180-300°C в течение 1-12 часов.

Первую ступень деформации проводят при температуре (370-450)°C в течение времени, необходимого для получения деформированной структуры.

Авторами установлено, что проведение термической обработки при температуре 180-300°C в течение 1-12 часов способствует формированию мелкозернистой и равноосной структуры с равномерно распределенными в объеме зерен упрочняющими высокодисперсными интерметаллическими фазами; проведение второй ступени деформации в изотермических условиях при температуре на (50-100)°C ниже, чем на первой ступени со скоростью 4·10-2-5·10-1 c-1 с суммарной степенью деформации 65-85% дает возможность получить регламентированную мелкозернистую (d зерна ≤10 мкм) структуру магниевых сплавов с высокодисперсными включениями интерметаллидов, что в результате приводит к повышению прочности, пластичности и коррозионной стойкости деформированных заготовок, а также позволяет сохранить анизотропию прочностных свойств на уровне не более 10-11%.

Примеры осуществления

Пример 1

Литые заготовки из магниевого сплава МА14 нагревали до температуры первой ступени деформации - 370°C, проводили 3 обжатия за один нагрев, по результатам микроанализа определяли достижение полностью деформированной структуры в заготовках. Затем проводили термическую обработку (т/о) при температуре 180°C в течение 1 часа. После этого заготовки нагревали до температуры 320°C (на 50°C ниже, чем на 1-й стадии деформации) и проводили вторую ступень деформации (объемную штамповку) в изотермических условиях со скоростью 4·10-2 c-1 и с суммарной степенью деформации 65%.

Примеры 2-6 осуществляли аналогично Примеру 1, см. табл.

Примеры 7, 8. Способ-прототип

Литые заготовки из магниевых сплавов МА14, ВМД10 нагревали перед каждым переходом ступенчатой деформации, ступенчатую деформацию заготовки осуществляли с суммарной степенью деформации 94-99,5%, а после охлаждения заготовки на воздухе проводили окончательный нагрев до 370-420°C в изотермических условиях и окончательную деформацию со скоростью 1·10-4 c-1-2·10-2.

В таблице приведены свойства деформированных методом объемной штамповки полуфабрикатов из магниевых сплавов по указанным режимам предлагаемого способа, а также изготовленных по способу-прототипу.

Предлагаемый способ обработки магниевых сплавов по сравнению со способом-прототипом, как это следует из анализа представленных в таблице результатов, имеет следующие преимущества:

- предел прочности деформированных полуфабрикатов из магниевых сплавов повышается на 15-20%;

- относительное удлинение стабильно выше 11%;

- общая коррозионная стойкость возрастает на 20-30%;

- сохраняется малая анизотропия прочностных свойств (не более 10-11%).

Получаемые по предлагаемому способу обработки деформируемые полуфабрикаты отличаются повышенными прочностными, пластичными и коррозионными свойствами при сохранении малой анизотропии, что способствует повышению ресурса, надежности конкретных изделий из этих полуфабрикатов, расширяет возможность их применения.

Таблица Способ Сплав Деформация первой ступени Термообра-ботка Вторая ступень деформации (в изотермических условиях) Свойства Коэффици-ент анизотропии предела прочности Условия нагрева Т,°С Условия деформации Т, °C Время, час. Т,°C Скорость, с-1 Суммар-ная степень, % . Vкорр. δ МПа г/м3· сут % 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Предлага-емый способ МА14 Один нагрев 370 2 обжатия, последующий контроль микрострук-туры 180 1 320 4·10-2 65 23 11,3 10,2 410 4 обжатия, последующий контроль микрострук-туры 240 6 335 2·10-1 75 26 12,8 10,7 450 5 обжатий, последующий контроль микрострук-туры 300 12 350 5·10-1 85 28 12,5 7,1 Предлага-емый способ ВМД10 Один нагрев 370 2 обжатия, последующий контроль микрострук-туры 180 1 320 4·10-2 66 18 12,4 8,5 410 4 обжатия, последующий контроль микрострук-туры 240 6 335 2·10-1 75 20 13,0 7,3 450 5 обжатий, последующий контроль микрострук-туры 300 12 350 5·10-1 85 21 13,8 10 Способ- прототип МА14 нагрев перед каждым пере-ходом 280 Суммарная степень деформации 94-99,5% Отсутст-вует 370 1·10-4÷ 2·10-2 - 33-35 7,5-9,2 10,6-14 ВМД10 420 420 25-26 10,5-11,0 10-11 *) в числителе приведены значения свойств в долевом направлении, в знаменателе - в поперечном направлении по отношению к волокну

Похожие патенты RU2376397C1

название год авторы номер документа
СПОСОБ ОБРАБОТКИ МАГНИЕВЫХ СПЛАВОВ 2015
  • Каблов Евгений Николаевич
  • Волкова Екатерина Федоровна
  • Дуюнова Виктория Александровна
  • Мостяев Игорь Владимирович
RU2598424C1
СПОСОБ ОБРАБОТКИ МАГНИЕВЫХ СПЛАВОВ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ЭТИМ СПОСОБОМ 2001
  • Волкова Е.Ф.
  • Гуревич Ф.Л.
  • Самсонов В.Д.
  • Авдеева О.П.
  • Смирнов В.А.
RU2213800C2
СПОСОБ ОБРАБОТКИ МАГНИЕВЫХ СПЛАВОВ 1998
  • Гришечкин А.И.
  • Тетюхин В.В.
  • Сухих А.Ю.
  • Мельников Д.Л.
  • Декун И.И.
RU2148104C1
Способ получения биорезорбируемого магниевого сплава и его применение 2020
  • Виноградов Алексей Юрьевич
  • Мерсон Дмитрий Львович
  • Костин Владимир Иванович
  • Байриков Иван Михайлович
  • Байриков Алексей Иванович
RU2758798C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ АЛЮМИНИЕВЫХ ИЛИ МАГНИЕВЫХ СПЛАВОВ С НАНО- И СУБМИКРОКРИСТАЛЛИЧЕСКОЙ СТРУКТУРОЙ И ИЗДЕЛИЯ, ИЗГОТОВЛЕННЫЕ ИЗ ЭТИХ СПЛАВОВ (ВАРИАНТЫ) 2011
  • Чувильдеев Владимир Николаевич
  • Нохрин Алексей Владимирович
  • Москвичева Анна Владимировна
  • Лопатин Юрий Геннадьевич
  • Баранов Глеб Викторович
  • Белов Владимир Юрьевич
RU2467090C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЛИСТОВЫХ ПОЛУФАБРИКАТОВ ИЗ ТЕХНИЧЕСКОГО ТИТАНА 2002
  • Малышева С.П.
  • Валиахметов О.Р.
  • Галеев Р.М.
  • Кайбышев О.А.
  • Салищев Г.А.
RU2224046C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЛИСТОВЫХ ПОЛУФАБРИКАТОВ ИЗ ТИТАНОВЫХ СПЛАВОВ 2002
  • Валиахметов О.Р.
  • Галеев Р.М.
  • Кайбышев О.А.
  • Салищев Г.А.
RU2224047C1
СПЛАВ НА ОСНОВЕ МАГНИЯ И СПОСОБ ЕГО ОБРАБОТКИ В ЖИДКОМ, ТВЕРДОЖИДКОМ И ТВЕРДОМ СОСТОЯНИЯХ ДЛЯ ПОЛУЧЕНИЯ ИЗДЕЛИЙ С ОДНОРОДНОЙ МЕЛКОЗЕРНИСТОЙ СТРУКТУРОЙ 2001
  • Щеголев В.И.
  • Елкин Ф.М.
  • Ларионов А.А.
  • Галанов А.И.
  • Татакин А.Н.
  • Бойцева В.Н.
RU2215057C2
СПОСОБ ИЗГОТОВЛЕНИЯ ГОРЯЧЕКАТАНЫХ ПОЛУФАБРИКАТОВ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ СО СКАНДИЕМ 2011
  • Кучкин Василий Васильевич
  • Барахтина Наталия Николаевна
  • Осокин Евгений Петрович
  • Андреев Геннадий Николаевич
  • Алифиренко Евгений Анатольевич
  • Дриц Александр Михайлович
  • Соседков Сергей Михайлович
  • Слюсаренко Александр Лукич
RU2461642C1
СПОСОБ ПРЕССОВАНИЯ ГРАНУЛ МАГНИЕВЫХ СПЛАВОВ 2008
  • Шанин Николай Дмитриевич
RU2370342C1

Реферат патента 2009 года СПОСОБ ОБРАБОТКИ МАГНИЕВЫХ СПЛАВОВ

Изобретение относится к авиационному и космическому материаловедению и может быть использовано для изготовления изделий авиационной, ракетокосмической техники и машиностроения - деталей управления и кресел, несущих деталей внутреннего набора: кронштейнов, качалок, штамповки и др. Литую заготовку нагревают и осуществляют двухступенчатую деформацию с охлаждением на воздухе. Вторую ступень деформации проводят в изотермических условиях при температуре на 50 - 100°С ниже температуры первой ступени со скоростью 4·10-2-5·10-1 с-1 и с суммарной степенью деформации 65-85%. Между первой и второй ступенями деформации проводят термическую обработку при температуре 180-300°С в течение 1-12 часов. Получаемые деформируемые полуфабрикаты отличаются повышенными прочностными, пластическими и коррозионными свойствами при сохранении малой анизотропии, что способствует повышению ресурса, надежности конкретных изделий из этих полуфабрикатов, расширяет возможность их применения. 1 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 376 397 C1

1. Способ обработки магниевых сплавов, включающий нагрев литой заготовки, двухступенчатую деформацию и охлаждение на воздухе, отличающийся тем, что вторую ступень деформации проводят в изотермических условиях при температуре на 50-100°С ниже температуры первой ступени со скоростью 4·10-2-5·10-1 с-1 и с суммарной степенью деформации 65-85%, а между первой и второй ступенями деформации проводят термическую обработку при температуре 180-300°С в течение 1-12 ч.

2. Способ по п.1, отличающийся тем, что первую ступень деформации проводят при температуре 370-450°С в течение времени, необходимого для получения деформированной структуры.

Документы, цитированные в отчете о поиске Патент 2009 года RU2376397C1

СПОСОБ ОБРАБОТКИ МАГНИЕВЫХ СПЛАВОВ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ЭТИМ СПОСОБОМ 2001
  • Волкова Е.Ф.
  • Гуревич Ф.Л.
  • Самсонов В.Д.
  • Авдеева О.П.
  • Смирнов В.А.
RU2213800C2
СПОСОБ ОБРАБОТКИ МАГНИЕВЫХ СПЛАВОВ 1998
  • Гришечкин А.И.
  • Тетюхин В.В.
  • Сухих А.Ю.
  • Мельников Д.Л.
  • Декун И.И.
RU2148104C1
Способ и приспособление для нагревания хлебопекарных камер 1923
  • Иссерлис И.Л.
SU2003A1
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1

RU 2 376 397 C1

Авторы

Каблов Евгений Николаевич

Волкова Екатерина Федоровна

Моисеев Николай Валентинович

Даты

2009-12-20Публикация

2008-09-22Подача