СПОСОБ ПОЛУЧЕНИЯ ТОНКИХ ПЛЕНОК, СОДЕРЖАЩИХ НАНОСТРУКТУРИРОВАННЫЙ ДИОКСИД ОЛОВА Российский патент 2010 года по МПК H01L21/316 B82B3/00 

Описание патента на изобретение RU2379784C1

Изобретение относится к области нанотехнологий и может быть использовано для изготовления сенсорных датчиков, приборов контроля составов газовых смесей, оптических приборов, в оптоэлектронике, наноэлектронике.

Известен способ получения высокодисперсного порошка диоксида олова (АС СССР №1696390, C01G 19/02), который предполагает окисление металлического олова кислородом при температуре 1700-3200°С при определенных углах подачи струи кислорода в реакционную зону.

Известны методы получения наноматериалов, основанных на использовании газофазного синтеза, плазмохимии, осаждений из полученных растворов и т.д. (А.И.Гусев. Наноматериалы, наноструктуры, нанотехнологии. М.: Физматлит, 2007, с.416). Они предполагают получение высокодисперсных нанокристаллических порошков твердой среды, в частности оксидов с последующим компактированием, в том числе осаждением на подложку (патент США №6036774, С30В 23/00, 2000).

Известен способ получения газочувствительного элемента на основе диоксида олова путем термического напыления олова на диэлектрическую подложку, последующее его термическое окисление в среде инертного газа и термического отжига в динамическом вакууме (заявка РФ №2002133540, С23С 14/18, 2004).

Известен способ получения ферромагнитных наночастиц металла с использованием электрохимического восстановления металла до нульвалентного состояния в инертных пористых матрицах оксида алюминия, получаемых электрохимической анодной обработкой алюминия (патент США №4808279, G11B 5/84, 1989), а также известно получение полупроводниковых наночастиц с использованием пористой матрицы оксида алюминия (патент США №5202290, H01L 21/20, 1993).

Рассмотренные методы в своей основе предполагают использование уже высокодисперсных порошков металла, либо реализацию синтеза оксида при высоких температурах, давлениях и других энергетически затратных условиях. При этом не достигается определенного упорядоченного расположения наноструктур в системе, например в тонких пленках, что зачастую диктуется конкретными технологиями.

Технический результат заключается в получении однородных упорядоченных структур диоксида олова.

Технический результат достигается тем, что способ получения тонких пленок, содержащих наноструктурированный диоксид олова, заключается в электрохимическом заполнении металлическим оловом пор в ячейках наноструктурированного оксида алюминия и последующим окислением олова на воздухе при температуре 250-450°С в течение 40-90 минут.

Как известно [1], при электрохимическом анодном окислении в растворах кислот на алюминии образуется пористая оксидная пленка с регулярной наноструктурой в виде одинаковых пористых ячеек с диаметром пор 10-30 нм и плотностью (10-70)·109 частиц на см2, расположенных ортогонально поверхности алюминия.

Путем электрохимического осаждения с использованием, например, кислых электролитов или их модификаций (а.с. №682581, C25D 3/32, 1979; патенты РФ №1678094, 1994; №2208664, 2003) поры заполняются металлическим оловом.

Затем система подвергается отжигу на воздухе при температуре 250-450°С в течение 40-90 минут. При этом металлическое олово подвергается окислению с образованием диоксида. При температуре ниже 250°С очень медленно идет реакция окисления, а при температурах более 450°С возможно разложение полученного соединения.

Пример.

1. Получение наноструктурированного анодного оксида на алюминии.

Электрохимическое анодное оксидирование алюминия производится в 10% водном растворе серной кислоты при плотности тела 10 мА/см2. Толщина оксида при этом пропорциональна времени оксидирования, а количество пористых ячеек составляет порядка 5,7·1017 м-2 (см. [1]).

2. Заполнение пор в ячейках наноструктурированного оксида алюминия. Операция производится электрохимически в водном кислом электролите следующего состава:

серно-кислое олово 20 г/л;

сульфосалициловая кислота 20 г/л;

серная кислота 9 г/л.

Одним электродом является образец алюминия с нанесенным наноструктурированным оксидом, другой электрод-графит. Ток переменный, напряжение 20 В, время обработки 10 минут.

После обработки образцы промывают и сушат.

3. Окисление олова в наноячейках.

Операция производится на воздухе при температуре 350°С в течение 60 минут.

Литература

1. Анодные оксидные покрытия на легких сплавах. Под общ. Ред. И.Н.Францевича. Киев: Наукова думка, 1977, с.259.

Похожие патенты RU2379784C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПЛЕНОК ПОРИСТОГО КРИСТАЛЛИЧЕСКОГО ДИОКСИДА ОЛОВА 2018
  • Несов Сергей Николаевич
  • Корусенко Петр Михайлович
  • Поворознюк Сергей Николаевич
  • Болотов Валерий Викторович
  • Ивлев Константин Евгеньевич
RU2671361C1
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУР ПОЛУПРОВОДНИКА 2008
  • Напольский Кирилл Сергеевич
  • Валеев Ришат Галеевич
  • Росляков Илья Владимирович
  • Лукашин Алексей Викторович
  • Сурнин Дмитрий Викторович
  • Ветошкин Владимир Михайлович
  • Романов Эдуард Аркадьевич
  • Лысков Николай Викторович
  • Укше Александр Евгеньевич
  • Добровольский Юрий Анатольевич
  • Елисеев Андрей Анатольевич
RU2385835C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВОЙ НАНОСТРУКТУРЫ 2011
  • Валеев Ришат Галеевич
  • Ветошкин Владимир Михайлович
  • Бельтюков Артемий Николаевич
  • Сурнин Дмитрий Викторович
  • Елисеев Андрей Анатольевич
  • Напольский Кирилл Сергеевич
  • Росляков Илья Владимирович
  • Петухов Дмитрий Игоревич
RU2460166C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО АНОДНОГО ОКСИДА ТИТАНА 2012
  • Белов Алексей Николаевич
  • Гаврилов Сергей Александрович
  • Дронов Алексей Алексеевич
  • Пятилова Ольга Вениаминовна
  • Шевяков Василий Иванович
RU2495963C1
Способ модификации фотонного кристалла на основе наноструктурированного пористого анодного оксида алюминия 2017
  • Филоненко Валентина Ивановна
  • Козырев Евгений Николаевич
  • Сабанов Владимир Харитонович
  • Беляева Татьяна Николаевна
  • Аскеров Роман Олегович
  • Гордеев Георгий Олегович
  • Ванеева Джульетта Джемалиевна
RU2665498C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО АНОДНОГО ОКСИДА АЛЮМИНИЯ 2006
  • Белов Алексей Николаевич
  • Гаврилов Сергей Александрович
  • Железнякова Анастасия Вячеславовна
  • Тихомиров Алексей Александрович
  • Тузовский Всеволод Константинович
  • Шевяков Василий Иванович
RU2324015C1
Способ получения нанопрофилированной ультратонкой пленки AlO на поверхности пористого кремния 2015
  • Леньшин Александр Сергеевич
  • Середин Павел Владимирович
  • Арсентьев Иван Никитич
  • Бондарев Александр Дмитриевич
  • Тарасов Илья Сергеевич
RU2634326C2
ЭЛЕКТРОХИМИЧЕСКАЯ ЯЧЕЙКА ДЛЯ ПОЛУЧЕНИЯ ПОРИСТЫХ АНОДНЫХ ОКСИДОВ МЕТАЛЛОВ И ПОЛУПРОВОДНИКОВ В IN-SITU ЭКСПЕРИМЕНТАХ ПО МАЛОУГЛОВОМУ РАССЕЯНИЮ ИЗЛУЧЕНИЯ 2009
  • Напольский Кирилл Сергеевич
  • Григорьев Сергей Валентинович
  • Елисеев Андрей Анатольевич
  • Лукашин Алексей Викторович
  • Григорьева Наталья Анатольевна
RU2425181C1
СПОСОБ ПОЛУЧЕНИЯ МЕМБРАН НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ 2011
  • Кондриков Николай Борисович
  • Царёв Сергей Александрович
RU2474466C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИТНЫХ НАНОКОМПОЗИТНЫХ МАТЕРИАЛОВ С УПОРЯДОЧЕННОЙ СТРУКТУРОЙ 2006
  • Григорьева Наталья Анатольевна
  • Напольский Кирилл Сергеевич
  • Елисеев Андрей Анатольевич
  • Лукашин Алексей Викторович
  • Третьяков Юрий Дмитриевич
  • Григорьев Сергей Валентинович
RU2322384C1

Реферат патента 2010 года СПОСОБ ПОЛУЧЕНИЯ ТОНКИХ ПЛЕНОК, СОДЕРЖАЩИХ НАНОСТРУКТУРИРОВАННЫЙ ДИОКСИД ОЛОВА

Изобретение относится к области нанотехнологий и может быть использовано для изготовления сенсорных датчиков, приборов контроля составов газовых смесей, оптических приборов, в оптоэлектронике, наноэлектронике. Технический результат заключается в получении однородных упорядоченных структур диоксида олова. Сущность изобретения: в способе получения тонких пленок, содержащих наноструктурированный диоксид олова, электрохимически заполняют металлическим оловом поры в ячейках наноструктурированного оксида алюминия, после чего окисляют олово на воздухе при температуре 250-450°С в течение 40-90 минут.

Формула изобретения RU 2 379 784 C1

Способ получения тонких пленок, содержащих наноструктурированный диоксид олова, заключающийся в электрохимическом заполнении металлическим оловом пор в ячейках наноструктурированного оксида алюминия и последующем окислении олова на воздухе при температуре 250-450°С в течение 40-90 мин.

Документы, цитированные в отчете о поиске Патент 2010 года RU2379784C1

US 5202290 А, 13.04.1993
СПОСОБ ЭЛЕКТРООСАЖДЕНИЯ ОЛОВА 2001
  • Медведев Г.И.
  • Макрушин Н.А.
RU2208664C2
US 6134946 A, 24.10.2000
JP 1293501 A, 27.11.1989
KR 20000019452 A, 15.04.2000
Устройство управления сортировкой лесоматериалов 1991
  • Киляков Алексей Михайлович
SU1824627A1
CN 101219860 A, 16.07.2008.

RU 2 379 784 C1

Авторы

Чернышов Вадим Викторович

Кукуев Вячеслав Иванович

Даты

2010-01-20Публикация

2008-12-02Подача