Изобретение относится к области органической химии, а именно к новым индивидуальным соединениям класса периконденсированных гетероциклических систем - замещенным 2H,8H-1,4-диокса-9b-азафенален-2,8-дионам общей формулы I и способу их получения, которые могут быть использованы для синтеза новых биологически активных производных, а также в медицине.
,
где
R=Н, R1=Me (Ia); Bu (Iб); сНех (Iв);
R=Cl, R1=Me (Iг);
R=Br, Rl=Me(Iд).
Известны соединения общей формулы II, включая их стереоизомеры, пролекарства и фармацевтически приемлемые соли или сольваты, с пери-конденсированной структурой, содержащие только азот в качестве гетероатома (не менее трех в системе) [Заявка №2003134630 на патент РФ, 7 МПК C07D 487/06. Антагонисты рецептора CRF].
Известны соединения формулы III или их фармацевтически приемлемые соли или эфиры [Заявка №2006100034 на патент РФ, 8 МПК C07D 487/06. Производные 1,3,4-триазафеналена и 1,3,4,6-тетраазафеналена].
Известны соединения формулы IV, включая их стереоизомеры, пролекарства и фармацевтически приемлемые соли и сольваты, имеющие в периконденсированной системе не менее двух гетероатомов (только азот) [Заявка №2004104464 на патент РФ, 7 МПК C07D 471/16. Химические соединения].
Известен диазафенален V [Пат. №2049090РФ, 6 МПК C07D 237/36. 7-ацетил-6-метокси-3-метил-1-фенил-1Н-1,2-диазафенален, обладающий гипотензивной активностью].
Известны дионы периконденсированных гетероциклических систем, обладающие низкой токсичностью и высокой противоопухолевой активностью VI [Пат №2167877, 7 МПК C07D 471/06, …, 498/16. Производные конденсированных полициклических гетероциклических соединений и способ их получения; Pat. 5952335 US, Int. Cl. C07D 471/06, …, 498/06. Fused polycyclic heterocycle derivatives].
Известны оксаазафеналены, содержащие кетогруппу VII [Pat. 6500839 US (WO 0187886). CRF receptor antagonists and methods relating thereto].
,
где может быть A=Y=O, Z=O.
Известны тетраазафеналены с центральным атомом азота и способы их получения VIII [Pat. 966251 GB. Novel Polycyclic Nitrogen-Containing Compounds; Pat. 3112314 US. Certain 1,4,7,9b-tetraazaphenalenes and preparation thereof; Pat. 3112315 US. Production of dodecahydro-1,4,7,9b-tetraazaphenalenes].
Известно, что вещества с азафеналеновой структурой представляют собой обширный класс алкалоидов, которые обладают самой разнообразной физиологической активностью [Eberhard Breitmaier. Alkaloide. Vieweg+Teubner Verlag, 2002, 192 с.].
Изучение способов синтеза структур, близких по строению к алкалоидам, представляет большой интерес вследствие их высокой биологической активности, сложности строения, а также в связи с тем, что эти соединения могут быть исходными продуктами для получения лекарственных препаратов.
Наиболее близкой по строению к синтезированному нами веществу является структура (-)-порантеридина, алкалоида, выделенного из растения Poranthera corymbosa семейства Молочайные (Euphorbiaceae).
Описан способ получения данного алкалоида [Takahana, H. A new route to trans-2,6-disubtituted piperidine-related alkaloids using a novel С2-symmetric 2,6-diallylpiperidine carboxylic acid methyl ester / H.Takahana, Y.Saito, M.Ichinose // Org. Biomol. Chem. 2006. V.4. P.1587-1595], который состоит в последовательном образовании азафеналенового цикла из метилового эфира С2-симметричного 2,6-диаллилпиридинкарбоновой кислоты по общей схеме:
К недостаткам данного способа относятся сложность, многостадийность и вообще невозможность получения замещенных 2H,8H-1,4-диокса-9b-азафенален-2,8-дионов.
Задачей предполагаемой группы изобретений является синтез новых неописанных в литературе соединений, близких к алкалоидам с периконденсированными гетероциклическими структурами, потенциально обладающих биологической активностью, раскрытие технологических возможностей получения таких соединений.
Техническими результатами, на решение которых направлена группа изобретений, являются получение нового класса соединений - замещенных 2H,8H-1,4-диокса-9b-азафенален-2,8-дионов общей формулы I, которые могут быть использованы в качестве исходных продуктов для синтеза новых гетероциклических систем и в медицине, например, в качестве антимикробных средств; разработка простого способа их получения.
Поставленная задача осуществляется путем взаимодействия амида арилпропиоловой кислоты с моноалкилзамещенным малонилдихлоридом в соотношении 1:3 при температуре кипения в среде безводного неполярного органического растворителя с последующим выделением целевого продукта по схеме:
,
где
R=H, R1=Me (a); Bu (б); сНех(в);
R=n-Cl, R1=Me (г);
R=n-Вr, R1=Ме (д).
Из патентной и научно-технической литературы не выявлены способы синтеза новых заявляемых авторами соединений, и сами соединения.
Способ получения замещенных 2H,8H-1,4-диокса-9b-азафенален-2,8-дионов изучен и проведен в лабораторных условиях на стандартном товарном сырье.
Данные элементного анализа приведены в табл.1, выходы продуктов реакций, температуры плавления и величины Rf приведены в табл.2, спектральные характеристики полученных соединений сведены в табл.3 и 4.
Предполагаемая группа изобретений иллюстрирована чертежом и примерами практического осуществления.
На чертеже - общий вид молекулы 3,7,9-триметил-5-фенил-2H,8H-1,4-диокса-9b-азафенален-2,8-диона (Iа).
Пример 1. 3,7,9-триметил-5-фенил-2H,8H-1,4-диокса-9b-азафенален-2,8-дион (Iа).
В круглодонную колбу емкостью 100 мл загружают 1,0 г (0,007 моль) амида фенилпропиоловой кислоты и 40 мл безводного дихлорэтана в качестве среды (амид фенилпропиоловой кислоты растворяется полностью), а затем добавляют 2,3 мл (0,021 моль) метилмалонилдихлорида.
Реакционную смесь нагревают, через 30 минут в осадок выпадает кристаллический продукт. После 4-часового кипячения (84°С) реакционную массу охлаждают и выпавший твердый осадок отфильтровывают. Продукт представляет собой сухой остаток ярко-желтого цвета.
Затем осадок дважды перекристаллизовывают из ДМФА, промывают диэтиловым эфиром и сушат при комнатной температуре.
Перекристаллизованный продукт бледно-желтого цвета составляет 2 г, 90,5% от теоретического из расчета на амид фенилпропиоловой кислоты. Температура плавления >300°С. Хроматографическая однородность целевого продукта подтверждалась хроматографированием раствора его в ацетоне в системе этилацетата. Rf=0,57. Состав синтезированного соединения подтвержден элементным анализом. Брутто-формула: C19H15N // О4. Найдено, %: С - 68,72, Н - 3,96, N - 6,17; // - 21,15. Вычислено, %: С - 71,02, Н - 4,71, N - 4,36; // - 19,92.
Строение синтезированного вещества было доказано физико-химическими методами идентификации органических соединений: ЯМР 1Н и 13С, УФ-, ИК-масс-спектроскопией, а также с помощью рентгеноструктурного анализа.
В ИК спектрах вещества (таблетки КВr) наиболее характеристической является область 1800-1650 см-1, где наблюдаются полосы поглощения, соответствующие валентным колебаниям циклической сложноэфирной карбонильной группы (1750 см-1) и циклической карбонильной группы (1660 см-1). Полосы поглощения в области 1980-2780 см-1 относятся к колебаниям связей С-Н метильных групп, деформационные колебания этих связей находятся в диапазоне 1400-1380 см-1. В области 1620-1500 см-1 присутствуют полосы валентных колебаний ароматической системы, колебания С-Н связей бензольного кольца и азафеналенового цикла находятся в диапазоне 3100-3000 см-1.
УФ-спектр 3,7,9-триметил-5-фенил-2H,8H-1,4-диокса-9b-азафенален-2,8-диона в ацетонитриле имеет 2 максимума поглощения в области длин волн 251 и 316 нм.
В спектре ЯМР 1Н полученного соединения в дейтерированном ДМСО присутствуют сигналы протонов бензольного кольца (δ 7.95 2Н; δ 7.54 3Н), протона азафеналенового цикла при углероде С6 (δ 7.12 1Н) и протонов трех метильных групп (δ 2.07 3Н; δ 1.94 3Н; δ 1.86 3Н).
Спектр ЯМР 13С этого соединения характеризуется сигналами атомов углерода бензольного кольца (δ 125,38-130,84 м.д.), азафеналенового цикла (δ 95,96; 108,5; 110,57; 133,82; 140,03; 145,75; 153,85; 157,92; 167,26 м.д.) и метильных групп (δ 9,10-11,09 м.д.).
Также строение полученного вещества было доказано с помощью масс-спектра. Рассчитанная молекулярная масса полностью совпала с экспериментально найденной (M+=321).
Гетероциклический скелет был однозначно установлен на основании данных рентгеноструктурного анализа. На чертеже видно, что трициклическая азафеналеновая система почти планарна. Двугранный угол между плоскостями А и В циклов составляет 2,0 град., циклов В и С - 2,8 град., а А и С - 3,6 град. Все заместители находятся практически в плоскости цикла - их отклонения не превышают 0,06 град. Бензольное кольцо также находится фактически в плоскости азафеналенового цикла - двугранный угол между плоскостями азафеналенового цикла и бензольного кольца равен 7,0 град. Координаты базисных атомов приведены в таблице 5, длины связей и валентные углы - в таблице 6 и 7 соответственно.
Пример 2. 3,7,9-трициклогексил-5-фенил-2H,8H-1,4-диокса-9b-азафенален-2,8-дион (Iв).
В круглодонную колбу емкостью 100 мл загружают 1,0 г (0,007 моль) амида фенилпропиоловой кислоты, 4,1 мл (0,021 моль) циклогексилмалонилдихлорида и 40 мл безводного дихлорэтана в качестве среды. Реакционную смесь нагревают при температуре кипения растворителя в течение 3 часов. При этом амид фенилпропиоловой кислоты растворяется полностью даже без нагревания. После 3-часового нагревания реакционную смесь охлаждают и растворитель отгоняют. Затем осадок дважды перекристаллизовывают из ацетонитрила, промывают диэтиловым эфиром и сушат при комнатной температуре.
Перекристаллизованный продукт бледно-желтого цвета составляет 2,8 г, 78,4% от теоретического из расчета на амид фенилпропиоловой кислоты.
Пример 3. 3,7,9-триметил-5-(n-хлорфенил)-2Н,8Н-1,4-диокса-9b-азафенален-2,8-дион (Iг).
В круглодонную колбу емкостью 100 мл загружают 1,0 г (0,006 моль) амида n-хлорфенилпропиоловой кислоты, 2,1 мл (0,018 моль) метилмалонилдихлорида и 40 мл безводного бензола в качестве среды. Реакционную смесь кипятят. При этом амид n-хлорфенилпропиоловой кислоты растворяется полностью даже без нагревания, затем через 20 минут в осадок выпадает кристаллический продукт. Осадок отфильтровывают. Сухой остаток ярко-желтого цвета составляет 1,0 г. Затем осадок дважды перекристаллизовывают из ДМФА, промывают диэтиловым эфиром и сушат при комнатной температуре. Перекристаллизованный продукт бледно-желтого цвета составляет 0,85 г, 42,7% от теоретического из расчета на амид n-хлорфенилпропиоловой кислоты.
Пример 4. 3,7,9-триметил-5-(n-хлорфенил)-2H,8H-1,4-диокса-9b-азафенален-2,8-дион (Iг).
В круглодонную колбу емкостью 100 мл загружают 1,0 г (0,006 моль) амида n-хлорфенилпропиоловой кислоты, 2,1 мл (0,018 моль) метилмалонилдихлорида и 40 мл безводного бензола в качестве среды. После 4-часового кипячения реакционную смесь охлаждают и выпавший твердый осадок отфильтровывают. Сухой остаток ярко-желтого цвета составляет 1,8 г. Затем осадок дважды перекристаллизовывают из ДМФА, промывают диэтиловым эфиром и сушат при комнатной температуре. Перекристаллизованный продукт бледно-желтого цвета составляет 1,6 г, 81,6% от теоретического из расчета на амид n-хлорфенилпропиоловой кислоты.
Пример 5. 3,7,9-триметил-5-(n-бромфенил)-2H,8H-1,4-диокса-9b-азафенален-2,8-дион (Iд).
В круглодонную колбу емкостью 100 мл загружают 1,0 г (0,0045 моль) амида n-бромфенилпропиоловой кислоты, 1,5 мл (0,014 моль) метилмалонилдихлорида и 40 мл безводного хлороформа в качестве среды. Реакционную смесь кипятят течение 4 часов. Затем реакционную массу охлаждают и выпавший твердый осадок отфильтровывают. Сухой остаток оранжевого цвета составляет 1,7 г. Затем осадок дважды перекристаллизовывают из ДМФА, промывают диэтиловым эфиром и сушат при комнатной температуре. Перекристаллизованный продукт желтого цвета составляет 1,4 г, 75,4% от теоретического из расчета на амид n-бромфенилпропиоловой кислоты.
Пример 6. На примере соединения Iб проверена антимикробная активность. Определение минимально ингибирующих концентраций (МИК) проводили методом серийных разведений в мясопептонном бульоне в отношении тест-культур микроорганизмов Staphylococcus aureus (штамм 209-Р), Escherichia coli (штамм 1257), Candida albicans (штамм АТСС 885-635), рекомендованных Государственной Фармакопеей [Государственная Фармакопея СССР. Вып.2. Общие методы анализа. Лекарственное растительное сырье / МЗ СССР - 11 изд. доп. - М.: Медицина, 1989. 400 с.]. Исследуемые соединения не растворяются в воде, поэтому в качестве растворителя использовали 20%-ный раствор ДМСО, не подавляющий роста ни одной из использованных тест-культур в условиях эксперимента. Минимальная ингибирующая концентрация соединения 16 на Е. coli и С.albicans составляет 1000 мкг/мл, а на St. aureus составляет 1 мкг/мл, что находится на уровне широко используемых на практике антибиотиков (эдицин - 10-20 мкг/мл, ванкомицин и тейкопланин - 0,3-12,5 мкг/мл).
Получены новые соединения - замещенные 2Н,8Н-1,4-диокса-9b-азафенален-2,8-дионы общей формулы I, которые могут быть использованы в качестве исходных продуктов для синтеза новых гетероциклических систем и в медицине, например, в качестве антимикробных средств. Разработан простой одноэтапный способ их синтеза с высоким выходом. Способ занимает мало времени, не требует дорогого оборудования, основан на использовании доступного дешевого сырья.
название | год | авторы | номер документа |
---|---|---|---|
НОВЫЕ ОПТИЧЕСКИ АКТИВНЫЕ 4-ГИДРОКСИ-2-АЗА-9,10-АНТРАХИНОНЫ, ОБЛАДАЮЩИЕ ПРОТИВОВОСПАЛИТЕЛЬНОЙ АКТИВНОСТЬЮ, И СПОСОБ ИХ ПОЛУЧЕНИЯ | 2010 |
|
RU2436775C1 |
СПОСОБ ПОЛУЧЕНИЯ 2-R-6-R-5-АРИЛ-ПИРРОЛО[3,4-с]КАРБАЗОЛ-1,3(2Н,6Н)-ДИОНОВ | 2009 |
|
RU2404983C1 |
ЗАМЕЩЕННЫЕ ТРИЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ | 2020 |
|
RU2827641C1 |
ЗАМЕЩЕННЫЕ 2-[2-(3-ОКСОМОРФОЛИН-4-ИЛ)ЭТИЛТИО]БЕНЗИМИДАЗОЛЫ, ОБЛАДАЮЩИЕ АНКСИОЛИТИЧЕСКОЙ АКТИВНОСТЬЮ | 2007 |
|
RU2373202C2 |
Способ получения 7-замещенных 4,4-диметил-9-оксо-4,4а-дигидро-9Н-ксантен-2-карбоновых кислот и их цитотоксическая активность | 2017 |
|
RU2645679C1 |
СПОСОБ ПОЛУЧЕНИЯ 2-(2-АЦИЛВИНИЛ)ИНДОЛОВ | 2012 |
|
RU2495027C1 |
СПОСОБ ПОЛУЧЕНИЯ 4-АРИЛ-2,7,9-ТРИАЗАСПИРО[4.5]ДЕКАН-6,8,10-ТРИОНОВ | 2016 |
|
RU2635105C1 |
2-МЕТИЛАМИНО-4-ОКСО-3,6,6-ТРИМЕТИЛ-5,6-ДИГИДРО-8Н-ПИРАНО[4′,3′ : 4,5]ТИЕНО[2,3-D]ПИРИМИДИН ИЛИ ЕГО СОЛИ, ОБЛАДАЮЩИЕ ПРОТИВОСУДОРОЖНОЙ АКТИВНОСТЬЮ | 1983 |
|
SU1132513A1 |
5,5-ДИЗАМЕЩЕННЫЕ-2-МЕТИЛ-9,9-ДИОКСО-9-ТИАБИЦИКЛО[4.3.0]НОНАНЫ | 2001 |
|
RU2184732C1 |
ПРОИЗВОДНЫЕ 3,5-ДИОКСО- 3,4,5,6- ТЕТРАГИДРООКСАЗИНОВ И СПОСОБ БОРЬБЫ С СОРНЯКАМИ | 1991 |
|
RU2013956C1 |
Изобретение относится к новым индивидуальным соединениям класса периконденсированных гетероциклических систем - замещенным 2Н,8Н-1,4-диокса-9b-азафенален-2,8-дионам общей формулы I
(I),где: R=H, R1=Me (Ia); Bu (1б); cHex (Iв); R=Cl, R1 - Me (Ir); R=Br, R1=Me (Iд), и способу их получения путем взаимодействия амидов арилпропиоловых кислот моноалкилзамещенных малонилдихлоридов в среде безводного неполярного органического растворителя при кипячении с последующим выделением целевого продукта. Соединения формулы 1 обладают противомикробной активностью, а также могут быть использованы для синтеза новых биологически активных производных. Минимальная ингибирующая концентрация соединения Iб на Е. coli и C.albicans составляет 1000 мкг/мл, а на St. aureus составляет 1 мкг/мл. 2 н.п. ф-лы,7 табл., 1 ил.
1. Замещенные 2Н,8Н-1,4-диокса-9b-азафенален-2,8-дионы общей формулы I
(I),
где R=H, R1=Me (Ia - 3,7,9-триметил-5-фенил-2Н,8Н-1,4-диокса-9b-азафенален-2,8-дион);
R=H, R1=Bu (Iб - 3,7,9-трибутил-5-фенил-2Н,8Н-1,4-диокса-9b-азафенален-2,8-дион);
R=H, R1=cHex (Iв - 3,7,9-трициклогексил-5-фенил-2Н,8Н-1,4-диокса-9b-азафенален-2,8-дион);
R=Cl, R1=Me (Iг - 3,7,9-триметил-5-(n-хлорфенил)-2Н,8Н-1,4-диокса-9b-азафенален-2,8-дион);
R=Br, R1=Me (Iд - 3,7,9-триметил-5-(n-бромфенил)-2Н,8Н-1,4-диокса-9b-азафенален-2,8-дион).
2. Способ получения замещенных 2Н,8Н-1,4-диокса-9b-азафенален-2,8-дионов общей формулы I
(I),
где R=H, R1=Me (Ia - 3,7,9-триметил-5-фенил-2Н,8Н-1,4-диокса-9b-азафенален-2,8-дион);
R=H, R1=Bu (Iб - 3,7,9-трибутил-5-фенил-2Н,8Н-1,4-диокса-9b-азафенален-2,8-дион);
R=H, R1=cHex (Iв - 3,7,9-трициклогексил-5-фенил-2Н,8Н-1,4-диокса-9b-азафенален-2,8-дион);
R=Cl, R1=Me (Iг - 3,7,9-триметил-5-(n-хлорфенил)-2Н,8Н-1,4-диокса-9b-азафенален-2,8-дион);
R=Br, R1=Me (Iд - 3,7,9-триметил-5-(n-бромфенил)-2Н,8Н-1,4-диокса-9b-азафенален-2,8-дион),
заключающийся в том, что амид арилпропиоловой кислоты подвергают взаимодействию с моноалкилзамещенным малонилдихлоридом, взятыми в соотношении 1:3, при кипячении в среде безводного неполярного органического растворителя с последующим выделением целевого продукта.
Н.Takahana et al | |||
Org | |||
Biomol | |||
Chem., 2006, v.4, p.1587-1595 | |||
ПРОИЗВОДНЫЕ КОНДЕНСИРОВАННЫХ ПОЛИЦИКЛИЧЕСКИХ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ И СПОСОБ ИХ ПОЛУЧЕНИЯ | 1996 |
|
RU2167877C2 |
RU 200334630 A, 27.05.2005 | |||
RU 2006100034 A, 27.08.2006 | |||
ВСЕСОГОЗНДЯ и ПЛГБПГИО- ..технйисгля '^ б«тяотг;лА. И. КороткоеПАТРОН для | 0 |
|
SU187886A1 |
Авторы
Даты
2010-06-27—Публикация
2008-09-12—Подача