Настоящее изобретение относится к резиновой смеси для боковины.
УРОВЕНЬ ТЕХНИКИ
В шинах, особенно в отношении шины для большой нагрузки для грузового автомобиля, автобуса и т.д., с точки зрения сопротивления изгибу и прочности на изгиб, для боковины применяли резиновую смесь, включающую главным образом натуральный каучук и бутадиеновый каучук.
Так как боковина шины для большой нагрузки имеет склонность к повышенному тепловыделению (свойство низкого теплообразования легко ухудшается), для того чтобы подавить тепловыделение применяли, например, способ увеличения диаметра частицы технического углерода, способ снижения количества технического углерода или подобные способы. Однако в любом случае возникали проблемы, состоявшие в том, что снижалась прочность и уменьшалось сопротивление внешним повреждениям.
В JP-A-2005-75951 описана резиновая смесь для шины, включающая бутадиеновый каучук, в котором диспергирован синдиотактический 1,2-полибутадиен, однако, поскольку синдиотактический 1,2-полибутадиен в бутадиеновом каучуке имеет большой средний диаметр первичной частицы и не диспергирован в достаточной степени, соответствующие эксплуатационные характеристики не были достигнуты.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Задачей настоящего изобретения является получение резиновой смеси для боковины, в которой улучшен баланс между сопротивлением порезу и низким теплообразованием боковины.
Настоящее изобретение относится к резиновой смеси для боковины, включающей каучуковый компонент, включающий от 10 до 60 мас.% бутадиенового каучука, где в данном бутадиеновом каучуке диспергирован синдиотактический 1,2-полибутадиен, имеющий средний диаметр первичной частицы не более 100 нм.
ЛУЧШИЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Резиновая смесь для боковины по настоящему изобретению включает каучуковый компонент, а данный каучуковый компонент содержит бутадиеновый каучук (БК, содержащий СПБ), в котором диспергирован синдиотактический 1,2-полибутадиен.
В БК, содержащем СПБ, синдиотактический 1,2-полибутадиен (СПБ) достаточно тонко диспергирован в БК, который представляет собой матрицу, следовательно, средний диаметр первичной частицы СПБ в БК крайне мал.
В БК, содержащем СПБ, средний диаметр первичной частицы СПБ в БК составляет не более 100 нм, предпочтительно - не более 80 нм, более предпочтительно - не более 50 нм. Когда средний диаметр первичной частицы СПБ превышает 100 нм, невозможно достигнуть достаточного улучшающего воздействия физических свойств, обусловленного содержанием СПБ в БК. Средний диаметр первичной частицы СПБ, содержащегося в БК, определяли как среднее значение абсолютного максимума длины, полученного анализом изображения на фотографиях, сделанных с помощью просвечивающего электронного микроскопа.
Содержание СПБ в БК, содержащем СПБ, составляет предпочтительно не менее 7 мас.%, более предпочтительно - не менее 10 мас.%. Когда указанное содержание составляет менее чем 7 мас.%, становится невозможным достижение достаточного сопротивления порезу. Содержание СПБ в БК, содержащем СПБ, составляет предпочтительно не более 20 мас.%, более предпочтительно - не более 14 мас.%. Когда указанное содержание составляет более чем 20 мас.%, становится трудно смешивать резину, и невозможно достигнуть достаточного сопротивления порезу. Содержание СПБ в БК, содержащем СПБ, указывают через количество вещества, нерастворимого в кипящем н-гексане.
СПБ в БК, содержащем СПБ, представляет собой предпочтительно кристаллическое вещество, с точки зрения придания армирующей способности в интервале температур от нормальной температуры до температуры, при которой эксплуатируется шина.
Способы изготовления БК, содержащего СПБ, удовлетворяющие описанным выше условиям, не ограничены особым образом, и БК, содержащий СПБ, может быть изготовлен, например, способом, описанным в JP-A-2005-247899.
В резиновой смеси для боковины содержание БК, содержащего СПБ, в каучуковом компоненте (включая БК, не содержащий СПБ, если его используют совместно) составляет не менее 10 мас.%, предпочтительно - не менее 25 мас.%. Когда указанное содержание составляет менее 10 мас.%, становится трудным достижение достаточного сопротивления усталости при изгибе. Содержание БК, содержащего СПБ, в каучуковом компоненте составляет не более 60 мас.%, предпочтительно - не более 40 мас.%. Когда указанное содержание составляет более 60 мас.%, невозможно достигнуть достаточного сопротивления порезу.
Предпочтительно, чтобы резиновая смесь для боковины дополнительно включала натуральный каучук (НК) в качестве каучукового компонента.
В резиновой смеси для боковины содержание НК в каучуковом компоненте предпочтительно составляет не менее 30 мас.%, более предпочтительно - не менее 50 мас.%. Когда указанное содержание составляет менее 30 мас.%, становится невозможным достижение достаточного сопротивления порезу.
В качестве каучукового компонента в добавление к описанным выше НК и диеновому каучуку, содержащему синдиотактический 1,2-полибутадиен, в состав смеси могут совместно входить обычные бутадиеновые каучуки, не содержащие синдиотактический 1,2-полибутадиен, и бутадиен-стирольные каучуки.
Предпочтительно, чтобы резиновая смесь для боковины содержала технический углерод в качестве армирующего наполнителя совместно с описанными выше каучуковыми компонентами.
Площадь удельной поверхности технического углерода по адсорбции азота (N2УП) предпочтительно составляет от 40 до 80 м2/г. Когда значение N2УП составляет менее 40 м2/г, становится невозможным достижение достаточного сопротивления порезу. Когда значение N2УП составляет более 80 м2/г, тенденция к низкому теплообразованию подавляется.
Применяя резиновую смесь для боковины по настоящему изобретению, можно поддерживать твердость несмотря на снижение количества технического углерода, и даже при малом содержании технического углерода возможно сохранить или улучшить сопротивление усталости при изгибе, низкое теплообразование и прочность на разрыв, требуемые для резиновой смеси для боковины.
Содержание технического углерода может быть меньше, чем содержание технического углерода в традиционной резиновой смеси для боковины, и составляет от 20 до 45 мас. частей в расчете на 100 мас. частей каучукового компонента. Когда данное содержание составляет менее 20 мас. частей, становится невозможным достижение достаточного сопротивления порезу. Когда данное содержание составляет более 45 мас. частей, тенденция к низкому теплообразованию подавляется.
Предпочтительно, чтобы в состав резиновой смеси для боковины дополнительно входила клеящая смола.
Конкретными примерами клеящей смолы являются алифатические (С5) нефтяные смолы, ароматические (С9) нефтяные смолы, алициклические нефтяные смолы, терпеновые смолы и канифольные смолы; особенно предпочтительно применять алифатические (С5) нефтяные смолы.
Температура размягчения клеящей смолы составляет предпочтительно от 90°С до 130°С. Когда температура размягчения составляет менее 90°С, тенденция к низкому теплообразованию подавляется. Когда температура размягчения составляет более 130°С, становится трудно диспергировать ее во время смешения резины, и появляется тенденция к снижению сопротивления порезу.
Предпочтительно, чтобы количество клеящей смолы составляло от 1 до 5 мас. частей в расчете на 100 мас. частей каучукового компонента. Когда данное количество составляет менее 1 мас. части, становится невозможным достижение достаточной адгезии. Когда данное количество составляет более 5 мас. частей, тенденция к низкому теплообразованию подавляется.
В добавление к описанным выше компонентам в резиновую смесь для боковины можно вводить широко применяемые в резиновой промышленности вещества, такие как армирующий наполнитель, например диоксид кремния, стеариновая кислота, антиоксидант, воск, оксид цинка, вулканизатор и ускоритель вулканизации.
Резиновую смесь для боковины можно применять для изготовления шины обычным способом. А именно, невулканизированную резиновую смесь, полученную смешиванием каучукового компонента и армирующего наполнителя, экструдируют в форме боковины, пока она пригодна для экструдирования, а затем полученное экструдированное изделие ламинируют с другими частями шины для получения невулканизированной шины на формовочной машине для шин. Затем данную невулканизированную шину вулканизируют в вулканизаторе для изготовления шины.
Примерами указанной шины являются, например, шина для автомобиля и шина для большой нагрузки для грузового автомобиля, автобуса и т.д.; данная шина особенно предпочтительна для использования в качестве шины для большой нагрузки.
ПРИМЕРЫ
Настоящее изобретение более точно и подробно объясняют примеры, но настоящее изобретение не ограничивается только ими.
Различные вещества, входящие в состав смеси, применяемые в настоящем изобретении, перечислены ниже.
НК: TSR20
ВR150В: имеется в наличии у компании Ube Industries, Ltd.
VCR412: имеется в наличии у компании Ube Industries, Ltd. (БК, включающий диспергированный кристаллический синдиотактический 1,2-полибутадиен, содержание синдиотактического 1,2-полибутадиена: 12 мас.%, средний диаметр первичной частицы кристаллического синдиотактического 1,2-полибутадиена: 250 нм).
Прототип VCR: прототип имеется в наличии у компании Ube Industries, Ltd. (БК, включающий диспергированный кристаллический синдиотактический 1,2-полибутадиен, содержание синдиотактического 1,2-полибутадиена: 12 мас.%, средний диаметр первичной частицы кристаллического синдиотактического 1,2-полибутадиена: 43 нм).
ТУ N330: технический углерод N330 (N2УП: 80 м2/г) имеется в наличии у компании Mitsubishi Chemical Corporation
Оксид цинка: имеется в наличии у компании TOHO ZINC CO., LTD.
Стеариновая кислота: имеется в наличии у компании NOF Corporation
Антиоксидант: 6С имеется в наличии у компании Seiko Chemical Co., Ltd.
Воск: воск OZOACE имеется в наличии у компании NIPPON SEIRO Co., Ltd.
Клеящая смола: Escoletz1102 (смола С5, температура размягчения: от 97°С до 103°С), имеется в наличии у компании Exxon Chemical Company.
Порошок серы: имеется в наличии у компании Tsurumi Chemical Industry Co., Ltd.
Ускоритель вулканизации NS: TBBS, имеется в наличии у компании Ouchi Shinko Chemical Industrial Co., Ltd.
Средние диаметры первичной частицы VCR412 и прототипа VCR определяли как средние значения абсолютных максимумов длин, полученных анализом изображения на фотографиях, сделанных с помощью просвечивающего электронного микроскопа.
Площадь удельной поверхности по адсорбции азота (N2УП) технического углерода N330 измеряли согласно способу определения площади удельной поверхности методом адсорбции азота по японскому промышленному стандарту JIS K 6217-2.
Способ получения прототипа VCR
В сосуд из нержавеющей стали объемом 2 л, оборудованный мешалкой, при температуре, поддерживаемой равной 20°С, со скоростью 12,5 л/ч подавали смесь, включающую 32 мас.% бутадиена-1,3 и 68 мас.% дистиллята углеводородов, содержащих 4 атома углерода, содержащего в качестве основного компонента цис-бутен-2, растворенную в определенном количестве воды (содержание воды: 2,09 ммоль/л) и содержащую 20 мг/л сероуглерода; одновременно подавали диэтилалюминийхлорид (10 мас.% раствор в н-гексане, 3,13 ммоль/л), так чтобы молярное отношение диэтилалюминийхлорид/вода в растворе в реакционном сосуде составляло 1,5. Полученный выдержанный раствор подавали в сосуд для цис-полимеризации из нержавеющей стали объемом 5 л, оборудованный мешалкой, при температуре, поддерживаемой равной 40°С. В данный сосуд для цис-полимеризации подавали октоат кобальта (0,0117 ммоль/л октоата кобальта, раствор в н-гексане) и бутадиен-1,2 (8,2 ммоль/л бутадиена-1,2, 1,535 моль/л раствор в н-гексане) в качестве регулятора молекулярной массы. Полученный в результате цис-полимеризации раствор подавали в сосуд для 1,2-полимеризации из нержавеющей стали объемом 5 л, оборудованный спирально-лопастной мешалкой, и подвергали его непрерывной полимеризации при 35°С в течение 10 ч. В данный сосуд для 1,2-полимеризации непрерывно подавали триэтилалюминий (10 мас.% раствор в н-гексане, 4,09 ммоль/л). Полученный в результате полимеризации раствор подавали в смеситель, оборудованный мешалкой, в который добавляли 2,6-ди-трет-бутил-п-крезол в количестве 1 мас. часть на 100 мас. частей каучука, а затем добавляли небольшое количество метанола. Затем, после завершения полимеризации, непрореагировавшие бутадиен-1,3 и дистиллят углеводородов, содержащих 4 атома углерода, удаляли перегонкой, после которой проводили вакуумную сушку при нормальной температуре, и получали 8,3 кг прототипа VCR.
ПРИМЕРЫ 1-5 И СРАВНИТЕЛЬНЫЕ ПРИМЕРЫ 1-6
Способ изготовления шины для испытаний
Перечисленные выше вещества, входящие в состав смеси, за исключением серы и ускорителя вулканизации, смешивали в резиносмесителе типа Бенбери при температуре смешивания 150°С и времени смешивания 4 мин; содержание компонентов смеси приведено в Таблице 1.
Затем добавляли серу и ускоритель вулканизации, и смесь смешивали с применением открытого барабана при температуре смешивания от 40 до 60°С и времени смешивания 4 мин. Смешанный продукт экструдировали для получения листа резиновой смеси с применением экструдера.
Полученный лист резиновой смеси штамповали в форме боковины, ламинировали с другими частями шины и вулканизировали в течение 45 мин при 150°С, таким образом была изготовлена каждая шина для испытаний (размер шины 11R22,5), которую использовали для следующих измерительных испытаний.
Испытание вязкоупругих свойств
Используя испытательный образец (шириной 4 мм, толщиной от 1,8 до 2,2 мм и длиной 30 мм), вырезанный из шины для испытаний, для каждой смеси измеряли тангенс угла потерь (tg δ) при 2% деформации с помощью спектрометра вязкости VES (производства компании Iwamoto Seisakusyo K.K.) в режиме: температура - 70°С, начальная деформация - 10% и частота - 10 Гц. Затем для оценки теплообразования тангенс угла потерь выражали в виде показателя с помощью следующего уравнения для расчета. Чем выше данный показатель, тем более благоприятным является теплообразование.
(Показатель теплообразования) = (tg δ из Сравнительного Примера 1) / (каждый tg δ) × 100
Сопротивление порезу
Испытательные образцы, вырезанные из шины для испытаний, были соответствующим образом подвергнуты аэротермическому старению в испытательной печи при 80°С в течение 10 дней, после чего было проведено испытание на растяжение согласно японскому промышленному стандарту JIS K6251 и были измерены прочность на разрыв (ПР) и удлинение при разрыве (УР) испытательных образцов. Затем рассчитывали произведение полученной прочности на разрыв и удлинения при разрыве (ПР × УР) и выражали его соответствующим образом в виде показателя для оценки сопротивления порезу. Чем выше данный показатель, тем более предпочтительно сопротивление порезу.
(Показатель сопротивления порезу) =
= (каждое ПР × УР) / (ПР × УР из Сравнительного Примера 1) × 100
Твердость (DURO A)
Твердость измеряли в точке максимальной ширины боковины шины, согласно японскому промышленному стандарту JIS K6253 испытания твердомером (температура 23°С). Предпочтительно, когда твердость составляет 50±2.
Сопротивление росту трещины при изгибе
На боковую часть шины для испытаний в точке максимальной деформации наносили разрез шириной 5 мм и глубиной 2 мм, и шину прогоняли на барабане 15000 км при внутреннем давлении в шине 850 кПа, нагрузке 37,5 кН и скорости 40 км/ч. Случай, когда разрез не увеличивался, рассматривали как приемлемый (О).
Результаты описанных выше измерений показаны в Таблицах 1 и 2.
ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ
Согласно настоящему изобретению, баланс между сопротивлением порезу и теплообразованием боковины может быть улучшен введением в состав резиновой смеси для боковины определенного количества бутадиенового каучука, содержащего синдиотактический 1,2-полибутадиен, имеющий малый средний диаметр первичной частицы.
название | год | авторы | номер документа |
---|---|---|---|
РЕЗИНОВАЯ СМЕСЬ ДЛЯ ПРОТЕКТОРА | 2006 |
|
RU2394051C2 |
РЕЗИНОВАЯ СМЕСЬ ДЛЯ ШИНЫ | 2009 |
|
RU2428439C2 |
РЕЗИНОВАЯ СМЕСЬ ДЛЯ БОРТОВОЙ ЛЕНТЫ | 2006 |
|
RU2393180C2 |
РЕЗИНОВАЯ СМЕСЬ И ШИНА, ФУНКЦИОНИРУЮЩАЯ В СПУЩЕННОМ СОСТОЯНИИ, В КОТОРОЙ ИСПОЛЬЗОВАНА УКАЗАННАЯ СМЕСЬ | 2008 |
|
RU2395543C2 |
АВТОМОБИЛЬНАЯ ШИНА | 2009 |
|
RU2424910C2 |
РЕЗИНОВАЯ КОМПОЗИЦИЯ | 2005 |
|
RU2383565C2 |
Зимняя шина | 2016 |
|
RU2703207C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛИБУТАДИЕНОВОГО КАУЧУКА И РЕЗИНОВАЯ КОМПОЗИЦИЯ | 2005 |
|
RU2379319C2 |
РЕЗИНОВАЯ КОМПОЗИЦИЯ ДЛЯ ШИНЫ И НЕШИПОВАННАЯ ШИНА | 2010 |
|
RU2555024C2 |
ВИНИЛ·ЦИС-ПОЛИБУТАДИЕНОВЫЙ КАУЧУК И БУТАДИЕНОВАЯ РЕЗИНОВАЯ СМЕСЬ НА ЕГО ОСНОВЕ | 2004 |
|
RU2338756C2 |
Резиновая смесь для боковин, в которой улучшен баланс между сопротивлением расщеплению/резанию и тепловыделением боковин. Резиновая смесь для боковин содержит каучуковый компонент, содержащий 10-60 мас.% бутадиенового каучука, который содержит диспергированный в нем синдиотактический 1,2-полибутадиен), имеющий средний диаметр первичной частицы не более 100 нм. 2 н.п. ф-лы, 2 табл.
1. Резиновая смесь для боковины, включающая каучуковый компонент, включающий от 10 до 60 мас.% бутадиенового каучука, в котором диспергирован синдиотактический 1,2-полибутадиен, имеющий средний диаметр первичной частицы не более 100 нм, и не менее 30 мас.%, натурального каучука; от 20 до 45 мас.% технического углерода и от 1 до 5 мас.ч. клеящей смолы на 100 мас.ч. каучукового компонента, и
вулканизатор,
причем содержание синдиотактического 1,2-полибутадиена в бутадиеновом каучуке составляет от 7 до 20 мас.%.
2. Шина, имеющая боковину, которая включает резиновую смесь для боковины по п.1.
JP 2005247899 A, 15.09.2005 | |||
JP 2005075951 A, 24.03.2005 | |||
ВИНИЛ·ЦИС-ПОЛИБУТАДИЕНОВЫЙ КАУЧУК И БУТАДИЕНОВАЯ РЕЗИНОВАЯ СМЕСЬ НА ЕГО ОСНОВЕ | 2004 |
|
RU2338756C2 |
Химическая энциклопедия | |||
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
- М.: «БРД», 1995, с.224-226. |
Авторы
Даты
2010-06-27—Публикация
2006-12-25—Подача