СПОСОБ И УСТРОЙСТВО КОНТРОЛЯ ЦЕЛОСТНОСТИ СПУТНИКОВОЙ НАВИГАЦИОННОЙ СИСТЕМЫ Российский патент 2011 года по МПК G01S5/14 

Описание патента на изобретение RU2411533C1

Настоящее изобретение относится к космической области и может быть использовано для радионавигационных определений с помощью искусственных спутников Земли, в частности для осуществления контроля целостности системы без участия средств наземного комплекса управления и контрольных станций, размещаемых глобально.

Уровень техники

В процессе применения глобальных навигационных систем GPS и ГЛОНАСС, которыми пользуются для решения навигационной задачи быстрые пользователи (ракеты, самолеты, особенно в режиме посадки и дозаправки), принципиально важна достоверность навигационного сигнала (НС) спутника. Для системы ГЛОНАСС установлена норма времени между появлением несоответствия цифровой информации НС и истинным состоянием спутника и оповещением пользователя навигационного сигнала. Эта норма составляет единицы секунд вне зависимости от местоположения спутника. Саму процедуру определения недостоверности принято называть контролем целостности системы. Наземные комплексы управления располагают контрольными средствами для определения достоверности навигационного сигнала и записи признака недостоверности на спутник. Однако эти средства размещены на территории Российской Федерации и не могут быть использованы для спутников, не имеющих зону видимости с территории РФ, а также не могут выполнять требование по оперативности внесения в навигационный кадр признака недостоверности.

Из уровня техники известны технологии контроля целостности навигационной системы, раскрытые в /1/, /2/, /3/, /4/, /5/, /6/, /7/ и /8/.

Наиболее близким по технической сущности к заявляемому техническому решению (прототипом) является спутниковая навигационная система, раскрытая в /4/, сущность которой заключается в следующем.

В известной спутниковой навигационной системе осуществляется прием навигационных сигналов от спутников на наземных измерительных пунктах, один из которых является опорным, в измерительных пунктах измеряют псевдодальности и результаты этих измерений от каждого измерительного пункта передают в центр обработки для последующих операций.

Вышеуказанные существующие спутниковые навигационные системы предусматривают глобальное размещение контрольных станций, которые по выявлению недостоверности закладывают на спутник признак недостоверности навигационного сигнала, либо передают сообщение об этом в центр управления системой, который закладывает на спутник признак недостоверности.

Известные технические решения обладают целым рядом недостатков, к которым следует отнести:

- чрезвычайно высокую цену глобального размещения и эксплуатации контрольных станций;

- необходимость создания для каждого спутника системы в случае непосредственной закладки признака недостоверности с контрольной станции дополнительной радиолинии: контрольная станция-спутник;

- возможность вмешательства в эту радиолинию третьих лиц и искажение результатов контроля целостности системы;

- создание системы оперативной связи с применением спутников-ретрансляторов для связи контрольных станций с центром управления системой и центра управления системой со спутником.

Раскрытие изобретения

Задачей настоящего изобретения является осуществление контроля целостности спутниковой навигационной системы без участия средств наземного комплекса управления и контрольных станций, размещаемых глобально.

Техническим результатом заявленного технического решения является:

- повышение оперативности оповещения пользователя о недостоверности навигационного сигнала,

- снижение затрат на реализацию задачи контроля целостности системы ввиду отсутствия наземных комплексов управления и контроля, размещаемых глобально,

- исключение дополнительных радиолиний,

- повышение достоверности контроля целостности системы,

- повышение надежности.

Технический результат достигается тем, что в способе контроля целостности навигационного поля навигационной спутниковой системы осуществляют контроль цифровой информации навигационного сигнала, включают в навигационный сигнал признак недостоверности, определяют каждым спутником (космическим аппаратом - КА) навигационной спутниковой системы расчетную псевдодальность до других опорных спутников навигационной спутниковой системы, определяют невязки измерений псевдодальности, определяют соответствие невязок измерений заданному допуску и записывают каждым спутником признак недостоверности навигационного сигнала в цифровую информацию собственного навигационного сигнала.

Кроме того, в качестве опорных спутников используются спутники, находящиеся в зоне видимости наземного комплекса управления. В качестве опорных спутников используются оппозитные спутники. Определение каждым спутником навигационной спутниковой системы невязок измерений псевдодальности до других опорных спутников навигационной спутниковой системы осуществляют на любую текущую секунду. Измерение псевдодальности до выбранных опорных спутников осуществляется последовательно или одновременно на основании альманаха системы (АС) или по программе, заложенной наземным комплексом управления.

Устройство контроля целостности навигационной спутниковой системы для реализации способа содержит в каждом спутнике системы приемопередающее устройство, вычислитель, формирователь навигационного сигнала, источник навигационного сигнала, измеритель псевдодальности, блок расчета псевдодальности до других опорных спутников навигационной спутниковой системы, блок сравнения расчетной псевдодальности с измеренной, блок управления, блок принятия решений, причем первый выход приемопередающего устройства соединен с входом блока управления, второй выход приемопередающего устройства соединен с входом вычислителя, вход-выход которого соединен с блоком расчета псевдодальности до других опорных спутников, выход вычислителя соединен с первым входом формирователя навигационного сигнала, второй вход формирователя навигационного сигнала соединен с выходом блока принятия решений, первый вход блока принятия решений соединен с выходом блока сравнения расчетной псевдодальности с измеренной, второй вход блока принятия решений соединен с третьим выходом блока управления, первый вход блока сравнения расчетной псевдодальности с измеренной соединен с выходом блока расчета псевдодальности до других опорных спутников, второй вход блока сравнения расчетной псевдодальности с измеренной соединен с первым выходом измерителя псевдодальности, третий вход блока сравнения расчетной псевдодальности с измеренной соединен с выходом блока управления, второй выход измерителя псевдодальности соединен с первым входом блока расчета псевдодальности до других опорных спутников, первый выход блока управления соединен со вторым входом блока расчета псевдодальности до других опорных спутников, второй выход блока управления соединен с входом измерителя псевдодальности, выход формирователя навигационного сигнала соединен с входом источника навигационного сигнала.

При этом в качестве опорных спутников используются космические аппараты, находящиеся в зоне видимости наземного комплекса управления. В качестве опорных спутников используются оппозитные спутники. Блок расчета псевдодальности до других опорных спутников навигационной спутниковой системы осуществляет расчет на любую текущую секунду. Блок управления задает измерителю псевдодальности последовательное или одновременное измерение псевдодальности до выбранных опорных спутников.

Краткое описание чертежей

Признаки и сущность настоящего изобретения поясняются в последующем детальном описании, иллюстрируемом чертежами, где показано следующее:

фиг.1 - обобщенная схема навигационной спутниковой системы ГЛОНАСС в трех плоскостях;

фиг.2 - структурная схема заявленного устройства для реализации способа контроля целостности навигационной спутниковой системы ГЛОНАСС;

фиг.3 - алгоритм реализации заявленного способа и работы устройства.

На фиг.1 показано размещение опорных и контролируемого спутника навигационной спутниковой системы ГЛОНАСС в трех плоскостях.

На фиг.2 представлена структурная схема заявленного устройства для реализации способа контроля целостности навигационной спутниковой системы ГЛОНАСС, содержащая следующие блоки и обозначения:

1 - измеритель псевдодальности;

2 - блок управления;

3 - блок принятия решений;

4 - формирователь навигационного сигнала;

5 - источник навигационного сигнала;

6 - блок сравнения расчетной псевдодальности с измеренной;

7 - блок расчета псевдодальности до других опорных спутников системы;

8 - вычислитель;

9 - приемопередающее устройство.

На фиг.3 представлен алгоритм реализации заявленного способа и работы устройства, содержащий следующие блоки и обозначения:

а - альманах системы (АС);

б - навигационный сигнал опорного спутника;

1 - определение собственного местоположения и времени на предыдущую (15 или 45 мин каждого часа) точку навигационного кадра (НК);

2 - определение путем экстраполяции местоположения и времени на текущую секунду;

3 - определение расчетной дальности до опорных спутников;

4 - задание на контроль целостности системы ГЛОНАСС;

5 - перечень опорных спутников;

6 - сравнение расчетной дальности с измеренной (определение невязок);

7 - сравнение значения невязок с допуском;

8 - принятие решения о записи признака недостоверности в навигационный кадр собственного спутника;

9 - запись признака недостоверности в навигационный кадр собственного спутника;

10 - определение местоположения и времени опорного спутника на предыдущую точку навигационного кадра;

11 - определение путем экстраполяции местоположения опорного спутника на текущую секунду;

12 - измерение реальной дальности до опорного спутника.

Осуществление изобретения

Суть технического решения заключается в том, что каждый навигационный спутник самостоятельно определяет достоверность собственного излучаемого навигационного сигнала.

Причиной недостоверности может быть некорректная цифровая информация навигационного сигнала, ее несоответствие реальному состоянию спутника или несанкционированное нарушение стабильности бортового стандарта частоты.

Определение достоверности осуществляется путем оценивания значения невязок (сравнение расчетного значения псевдодальности с измеренным) навигационного сигнала каждого спутника системы по отношению к другим спутникам.

В случае, если невязки измерений псевдодальности спутника с несколькими другими спутниками системы превышают заданный допуск, это свидетельствует, что данный спутник излучает недостоверный навигационный сигнал, и он должен в свой навигационный кадр записать признак недостоверности.

Поскольку каждый спутник системы непрерывно или синхронно с обновлением информации в навигационном кадре проводит указанные операции, то вся навигационная система находится под постоянным контролем целостности. При этом с задержкой менее установленной нормы, не превышающей время срабатывания вычислительного процесса спутника, обеспечивается достоверность навигационного поля.

Работа устройства для реализации способа контроля целостности навигационной спутниковой системы ГЛОНАСС осуществляется следующим образом.

Через приемопередающее устройство наземный комплекс управления закладывает на каждый спутник альманах системы (АС), содержащий справочную информацию по всем спутникам системы, содержащую начальные условия движения (информацию по долготе и времени пересечения подспутниковой точкой экватора, коэффициент эксцентритета орбиты), а также данные по шкале времени бортового стандарта частоты. На основании этой информации блок расчета псевдодальности до других спутников системы (опорных) рассчитывает псевдодальность до других спутников на любую текущую секунду. Блок управления задает измерителю псевдодальности последовательное или одновременное измерение псевдодальности до выбранных опорных спутников системы. Измерение псевдодальности осуществляется сравнением фазы навигационного сигнала опорных спутников с собственной шкалой времени. Измеренное значение псевдодальности сравнивается с расчетным значением псевдодальности. Для обеспечения надежности контроля операция измерения псевдодальности и сравнения с расчетным значением проводится с несколькими опорными спутниками.

Если результат сравнения дальностей дает положительный результат, то считается, что спутник, проводящий контрольную операцию, излучает достоверный сигнал. Если сравнение псевдодальности со всеми опорными спутниками дает отрицательный результат, то это свидетельствует о недостоверности навигационного сигнала спутника, проводящего контрольную операцию, и блок принятия решения вносит в навигационный кадр, содержащий оперативную информацию для решения пользователем задачи позиционирования, определения вектора движения и привязки к времени системы, Госэталона, всемирного времени, признак недостоверности.

Причиной недостоверности навигационного сигнала (сигнал на несущих частотах 1600 МГц, 1200 МГц, содержащий псевдослучайную кодовую последовательность, оцифрованную секунду и значения эфемерид и поправок к системному времени) может быть:

- искажение цифровой информации навигационного кадра, составляемого вычислителем;

- несоответствие параметров движения спутника прогнозным значениям, вызываемое поведением спутника (погрешности ориентации, прохождение теней Земли и луны и т.д.), нарушение стабильности бортового стандарта частоты и времени.

Для принятия решения о недостоверности безразлично какими причинами она вызвана. Необходимо исключить у пользователя возможность недостоверного решения задачи позиционирования к определению вектора движения.

Выбор опорных спутников для осуществления контроля осуществляется по алгоритму, реализуемому в вычислителе спутника. Для расширения функциональных возможностей контроля в качестве опорных спутников могут назначаться оппозитные (противоположные) спутники системы.

Назначение блоков устройства (по фиг.2)

1. Вычислитель (поз.8)

В современных навигационных спутниках формирование цифровой составляющей навигационного сигнала происходит непосредственно на спутнике. Для этого с некоторой периодичностью, определяемой допустимой деградацией параметров движения и бортовой шкалы времени, обновляют средствами наземного комплекса управления начальные условия движения и полином «размножения» (определение прогнозных значений местоположения спутника и фазы бортовой шкалы времени). На основании этой информации вычислитель (поз.8) определяет указанные параметры на 15-ю и 45-ю минуты каждого часа и в цифровом виде выдает в формирователь навигационного сигнала (поз.4).

На момент времени осуществления контроля целостности системы вычислитель (поз.8) экстраполирует значение навигационных параметров 15-й или 45-й минут, определяя их значение на секунду осуществления контроля.

2. Блок расчета псевдодальности до других спутников (КА) систем (поз.7)

В составе навигационного кадра (цифровая информация навигационного сигнала) содержится альманах системы, включающий справочные данные по параметрам движения и шкале времени всех спутников системы. Используя эти данные и цифровую часть навигационного сигнала опорных спутников, блок (поз.7) определяет параметры движения и фазу шкалы времени опорных спутников. Имея значение местоположения, фазы шкалы времени двух спутников (собственного и опорного), блок (поз.7) вычисляет расчетное значение псевдодальности между двумя спутниками, которое затем используется для определения невязок при измерении псевдодальности.

3. Измеритель псевдодальности (поз.1)

Блок предназначен для измерения псевдодальности до опорного спутника. Измерение проводится путем приема НС с опорного спутника относительно собственной шкалы времени контролируемыми спутниками. Значение измеренной псевдодальности поступает в блок сравнения расчетных и измеренных псевдодальностей (поз.6) для определения невязок псевдодальностей.

4. Блок принятия решений (поз.3)

Владелец навигационной системы в различных ситуациях ее применения может изменять значение допустимой для пользователя точности навигационных определений. Достигается это путем загрубления (в младших разрядах цифровой информации) навигационного сигнала. Естественно, при изменении точностных характеристик навигационного сигнала изменится допустимое значение невязок измерений. Блок (поз.3) сравнивает полученные решения невязок по заданным спутникам с заданным пороговым значением и выдает сигнал в формирователь навигационного сигнала (поз.4) для записи в цифровую информацию признака недостоверности.

5. Блок сравнения расчетных и измеренных псевдодальностей (поз.6)

С выхода блока измерителя псевдодальности (поз.1) и блока расчетной псевдодальности (поз.7) поступают на блок (поз.6) сравнения значения псевдодальностей. Поскольку измерение псевдодальности проводится в беззапросном режиме, сравнение может проводиться как в единицах измерения псевдодальности (километрах), так и в единицах времени (наносекундах). Определенная невязка псевдодальностей по каждому спутнику поступает в блок принятия решений (поз.3).

6. Формирователь навигационного сигнала (поз.4)

Блок (поз.4) с использованием информации вычислителя (поз.8) формирует цифровую информацию навигационного кадра. В структуре навигационного кадра предусмотрен разряд двоичного кода, в который по сигналу от блока принятия решения (поз.3) заносится признак недостоверности.

7. Источник навигационного сигнала (поз.5)

Блок (поз.5) представляет собой передатчик, который на принятых в системе частотах излучает навигационный сигнал.

8. Блок управления (поз.2)

Блок (поз.2) координирует работу составных частей устройства, реализуя задание на контроль целостности.

Алгоритм контроля целостности спутниковой навигационной системы (см. фиг.3) реализуется следующим образом.

Каждый спутник навигационной системы передает неограниченному кругу пользователей навигационный сигнал, содержащий расчетное значение его местоположения на 15-ю и 45-ю минуты каждого часа. С использованием начальных условий движения пользователь системы или контролирующие средства могут определять местоположение спутника на любую текущую секунду, включая назначаемую вперед. Контролируемый спутник выполняет эту операцию на основании цифровой информации, которую он передает в своем навигационном сигнале. Имея альманах системы, операцию определения расчетного текущего местоположения на выбранную для выполнения операции контроля секунду можно определить для любого опорного спутника системы. Выбор опорных спутников, для которых определяется местоположение, осуществляется контролируемым спутником по заданному алгоритму и альманаху системы, но может задаваться принципиально наземным комплексом управления. Наличие местоположения контролируемого и опорного спутников обеспечивает возможность определения расчетной дальности между спутниками. Поскольку каждый спутник системы излучает навигационный сигнал, то у контролируемого спутника есть возможность измерить эту дальность путем приема навигационного сигнала опорного спутника.

Сравнение измеренной дальности и расчетной дает один из двух результатов:

- расчетная и измеренная дальности совпадают в пределах допуска, что свидетельствует о достоверности навигационного сигнала контролируемого спутника, допуск на расхождение значений расчетной и измеренной дальностей определяется владельцем навигационной системы в зависимости от того, какую предельную ошибку навигационных определений он считает возможным предоставить пользователю;

- расчетная и измеренная дальности не совпадают, что свидетельствует о недостоверности навигационного сигнала одного из спутников - контролируемого или опорного.

Для разрешения неоднозначности операцию сравнения дальностей контролируемый спутник проводит с несколькими опорными. Если со всеми опорными спутниками имеет место несовпадение расчетной дальности с измеренной, то это с высокой вероятностью свидетельствует о недостоверности навигационного сигнала контролируемого спутника.

Предложенное техническое решение исключает необходимость глобального размещения контрольных станций, создание системы связи контрольных станций с центром управления системой, включая применение спутников - ретрансляторов, вмешательство третьих лиц в процессе контроля целостности системы. Техническое решение обеспечивает предельно возможную оперативность контроля целостности системы.

Настоящее изобретение полезно тем, что оно может быть практически применено для развития и совершенствования спутниковой навигационной системы.

Промышленная применимость

Настоящее изобретение относится к космической области и может быть использовано для радионавигационных определений с помощью искусственных спутников Земли, в частности для осуществления контроля целостности системы без участия средств наземного комплекса управления и контрольных станций, размещаемых глобально. Данное изобретение позволяет повысить оперативность оповещения пользователя о недостоверности навигационного сигнала; снизить затраты на реализацию задачи контроля целостности системы ввиду отсутствия наземных станций контроля и управления, размещаемых глобально; исключить дополнительные радиолинии; повысить достоверность контроля целостности системы; повысить надежность.

Проведенный анализ позволил установить: аналоги с совокупностью признаков, тождественных всем признакам заявленного технического решения, отсутствуют, что указывает на соответствие заявленного решения условию «новизна».

Результаты поиска известных решений с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленной системы, показали, что они не следуют явным образом из уровня техники, а также не установлена известность влияния отличительных признаков на указанный авторами технический результат. Следовательно, заявленное изобретение соответствует условию патентоспособности «изобретательский уровень».

В настоящем описании и в формуле изобретения единственное число функциональных устройств не исключает наличие нескольких таких функциональных устройств. Дополнительно, слова «содержащий» и «включающий» не исключают наличие других функциональных устройств или этапов кроме перечисленных.

Несмотря на то, что настоящее изобретение показано и описано со ссылкой на его определенные предпочтительные варианты осуществления, специалистам в данной области техники будет понятно, что различные изменения по форме и содержанию могут быть сделаны в нем без отклонения от сущности и объема настоящего изобретения, которые определены прилагаемой формулой изобретения.

Источники информации

1. Спутниковая навигационная система по патенту Российской Федерации №2253128, оп. 27.05.2005, МПК7 G01S 5/00.

2. Спутниковая навигационная система по патенту Российской Федерации №2115137, оп. 10.07.1998, МПК7 G01S 5/00.

3. Спутниковая навигационная система по патенту Российской Федерации №2152050, оп. 27.06.2000, МПК7 G01S 5/14.

4. Спутниковая навигационная система по патенту Российской Федерации №2175771, оп. 10.11.2001, МПК7 G01S 5/14 (прототип).

5. Спутниковая навигационная система по патенту США №5621646, оп. 15.04.1997, МПК GO IS 1/00.

6. Спутниковая навигационная система по патенту США №5644318, оп. 01.07.1997, МПК G01S 5/14.

7. Спутниковая навигационная система по патенту США №5752218, оп. 12.05.1998, МПК G01S 5/00.

8. Спутниковая навигационная система по патенту США №5585800, оп. 17.12.2000, МПК G01S 5/14.

Похожие патенты RU2411533C1

название год авторы номер документа
СПОСОБ И УСТРОЙСТВО КОНТРОЛЯ ЦЕЛОСТНОСТИ СПУТНИКОВОЙ НАВИГАЦИОННОЙ СИСТЕМЫ 2013
  • Алексеев Олег Александрович
  • Свинтицкий Ярослав Владимирович
RU2559648C2
Способ определения местоположения абонентских терминалов, перемещающихся в зоне покрытия локальной системы навигации 2023
  • Корнеев Игорь Леонидович
  • Борисов Константин Юрьевич
  • Кондрашов Захар Константинович
  • Григорьев Александр Владимирович
  • Юров Виктор Владимирович
  • Александров Алексей Валерьевич
  • Кузнецов Александр Сергеевич
  • Королев Вячеслав Сергеевич
  • Анищенко Евгений Александрович
  • Старовойтов Евгений Игоревич
RU2825248C1
Применение триангуляционных методов измерений в системе ГЛОНАСС. 2015
  • Калинин Борис Павлович
RU2669042C2
СПУТНИКОВАЯ РАДИОНАВИГАЦИОННАЯ СИСТЕМА ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ОБЪЕКТА 1999
  • Виноградов А.А.
  • Дворкин В.В.
  • Союзов М.В.
  • Урличич Ю.М.
RU2152050C1
СИСТЕМА ВЫСОКОТОЧНОЙ АВТОМАТИЧЕСКОЙ ПОСАДКИ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 2004
  • Урличич Юрий Матэвич
  • Дворкин Вячеслав Владимирович
  • Марков Сергей Сергеевич
  • Поваляев Егор Александрович
RU2287838C2
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ОБЪЕКТОВ-ПОТРЕБИТЕЛЕЙ НАВИГАЦИОННОЙ ИНФОРМАЦИИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2009
  • Дворкин Вячеслав Владимирович
  • Карутин Сергей Николаевич
  • Шилов Анатолий Евгеньевич
RU2402786C1
СИСТЕМА ВЫСОКОТОЧНОГО ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ОБЪЕКТОВ-ПОТРЕБИТЕЛЕЙ НАВИГАЦИОННОЙ ИНФОРМАЦИИ ПО НАВИГАЦИОННЫМ РАДИОСИГНАЛАМ С САНКЦИОНИРОВАННЫМ ДОСТУПОМ В РЕЖИМЕ ДИФФЕРЕНЦИАЛЬНЫХ ПОПРАВОК 2000
  • Виноградов А.А.
  • Дворкин В.В.
  • Союзов М.В.
  • Урличич Ю.М.
RU2161317C1
СИСТЕМА РАДИОСВЯЗИ С ПОДВИЖНЫМИ ОБЪЕКТАМИ 2013
  • Кейстович Александр Владимирович
RU2544007C2
СПОСОБ ВЫСОКОТОЧНЫХ ИЗМЕРЕНИЙ ТРАЕКТОРНЫХ КООРДИНАТ ЛЕТАТЕЛЬНОГО АППАРАТА В ЛЕТНЫХ ИССЛЕДОВАНИЯХ НА ТРАССАХ БОЛЬШОЙ ПРОТЯЖЕННОСТИ 2008
  • Копылов Игорь Анатольевич
  • Поликарпов Валерий Георгиевич
  • Паденко Виктор Михайлович
  • Харин Евгений Григорьевич
  • Копелович Владимир Абович
  • Калинин Юрий Иванович
  • Сапарина Татьяна Петровна
  • Фролкина Людмила Вениаминовна
  • Степанова Светлана Юрьевна
RU2393430C1
СПОСОБ КООРДИНАТНО-ИНФОРМАЦИОННОГО ОБЕСПЕЧЕНИЯ ПОДВОДНЫХ МОБИЛЬНЫХ ОБЪЕКТОВ 2007
  • Чубыкин Алексей Алексеевич
  • Катенин Владимир Александрович
RU2390098C2

Иллюстрации к изобретению RU 2 411 533 C1

Реферат патента 2011 года СПОСОБ И УСТРОЙСТВО КОНТРОЛЯ ЦЕЛОСТНОСТИ СПУТНИКОВОЙ НАВИГАЦИОННОЙ СИСТЕМЫ

Изобретение относится к космической области и может быть использовано для радионавигационных определений с помощью искусственных спутников Земли, в частности для осуществления контроля целостности системы без участия средств наземного комплекса управления и контрольных станций, размещаемых глобально. Технический результат состоит в повышении оперативности оповещения пользователя о недостоверности навигационного сигнала, повышении достоверности контроля целостности системы, повышении надежности. Для этого устройство содержит приемопередающее устройство, вычислитель, формирователь навигационного сигнала, источник навигационного сигнала, измеритель дальности, блок расчета дальности до других опорных спутников навигационной спутниковой системы, блок сравнения расчетной дальности с измеренной, блок управления и блок принятия решений. 2 н. и 9 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 411 533 C1

1. Способ контроля целостности спутниковой навигационной системы, заключающийся в том, что принимают навигационные сигналы от i-х спутников, где i - целое число, больше единицы, измеряют соответствующие псевдодальности до каждого i-го спутника, отличающийся тем, что включает измерение псевдодальности до каждого i-го спутника каждым n-м контролируемым спутником, где n - целое число, больше единицы, определение расчетной псевдодальности до каждого i-го спутника, определение невязок измерений псевдодальности и соответствия их заданному допуску с последующей записью признака недостоверности в цифровую информацию собственного навигационного сигнала.

2. Способ по п.1, отличающийся тем, что i-е спутники выбираются из числа тех, которые находятся в зоне видимости наземных комплексов управления.

3. Способ по п.2, отличающийся тем, что в качестве i-х спутников используются оппозитные спутники.

4. Способ по п.3, отличающийся тем, что определение невязок измерений псевдодальности до каждого i-го спутника осуществляют на любую текущую секунду.

5. Способ по п.4, отличающийся тем, что измерение псевдодальности до каждого i-го спутника производится последовательно или одновременно.

6. Способ по п.5, отличающийся тем, что спутниковой системой является ГЛОНАСС, или GPS, или Галилео.

7. Устройство контроля целостности спутниковой навигационной системы, содержащее в каждом n-м спутнике, где n - целое число, больше единицы, приемопередающее устройство, вычислитель, формирователь навигационного сигнала, источник навигационного сигнала, отличающееся тем, что содержит измеритель псевдодальности, блок расчета псевдодальности до каждого i-го спутника, где i - целое число, больше единицы, блок сравнения расчетной псевдодальности с измеренной, блок управления, блок принятия решений, причем первый выход приемопередающего устройства соединен с входом блока управления, второй выход приемопередающего устройства соединен с входом вычислителя, вход-выход которого соединен с блоком расчета дальности до каждого i-го спутника, выход вычислителя соединен с первым входом формирователя навигационного сигнала, второй вход формирователя навигационного сигнала соединен с выходом блока принятия решений, первый вход блока принятия решений соединен с выходом блока сравнения расчетной псевдодальности с измеренной, второй вход блока принятия решений соединен с третьим выходом блока управления, первый вход блока сравнения расчетной псевдодальности с измеренной соединен с выходом блока расчета псевдодальности до каждого i-го спутника, второй вход блока сравнения расчетной псевдодальности с измеренной соединен с первым выходом измерителя псевдодальности, третий вход блока сравнения расчетной псевдодальности с измеренной соединен с четвертым выходом блока управления, второй выход измерителя псевдодальности соединен с первым входом блока расчета псевдодальности до каждого i-го спутника, первый выход блока управления соединен со вторым входом блока расчета псевдодальности до каждого i-го спутника, второй выход блока управления соединен с входом измерителя псевдодальности, выход формирователя навигационного сигнала соединен с входом источника навигационного сигнала, причем вычислитель выполнен с возможностью определения цифровой информации для навигационного кадра, причем блок управления осуществляет координацию работы блока сравнения расчетной псевдодальности с измеренной, блока рачета псевдодальности до каждого i-го спутника, блока принятия решения и измерителя псевдодальности.

8. Устройство по п.7, отличающееся тем, что i-е спутники выбираются из числа тех, которые находятся в зоне видимости наземных комплексов управления.

9. Устройство по п.8, отличающееся тем, что в качестве i-х спутников используются оппозитные спутники.

10. Устройство по п.9, отличающееся тем, что блок расчета псевдодальности до каждого i-го спутника осуществляет расчет на любую текущую секунду.

11. Устройство по п.10, отличающееся тем, что спутниковой системой является ГЛОНАСС, или GPS, или Галилео.

Документы, цитированные в отчете о поиске Патент 2011 года RU2411533C1

СПОСОБ ПОСАДКИ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ИСПОЛЬЗОВАНИЕМ СПУТНИКОВОЙ НАВИГАЦИОННОЙ СИСТЕМЫ И СИСТЕМА ПОСАДКИ НА ЕГО ОСНОВЕ 2007
  • Бабуров Владимир Иванович
  • Волчок Юрий Генрихович
  • Гальперин Теодор Борисович
  • Губкин Сергей Васильевич
  • Долженков Николай Николаевич
  • Завалишин Олег Иванович
  • Купчинский Евгений Брониславович
  • Кушельман Валерий Яковлевич
  • Саута Олег Иванович
  • Соколов Алексей Иванович
  • Юрченко Юрий Семенович
RU2331901C1
ИНТЕГРИРОВАННАЯ ИНЕРЦИАЛЬНО-СПУТНИКОВАЯ НАВИГАЦИОННАЯ СИСТЕМА 2004
  • Фомичев Алексей Алексеевич
  • Колчев Андрей Борисович
  • Успенский Валерий Борисович
  • Брославец Юрий Юрьевич
  • Чистяков Геннадий Андреевич
  • Счастливец Кирилл Юрьевич
  • Китаев Сергей Михайлович
RU2277696C2
ДАЛЬНОМЕРНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ И СОСТАВЛЯЮЩИХ ВЕКТОРА СКОРОСТИ ОБЪЕКТОВ ПО РАДИОСИГНАЛАМ КОСМИЧЕСКИХ АППАРАТОВ СПУТНИКОВЫХ РАДИОНАВИГАЦИОННЫХ СИСТЕМ 1994
  • Армизонов Николай Егорович
  • Чмых Михаил Кириллович
  • Черемисин Владимир Филиппович
  • Армизонов Алексей Николаевич
RU2115137C1
СПУТНИКОВАЯ РАДИОНАВИГАЦИОННАЯ СИСТЕМА ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ОБЪЕКТА 1999
  • Виноградов А.А.
  • Дворкин В.В.
  • Союзов М.В.
  • Урличич Ю.М.
RU2152050C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОТНОСИТЕЛЬНЫХ КООРДИНАТ ОБЪЕКТА С ПРИВЯЗКОЙ К ПРОИЗВОЛЬНОЙ ТОЧКЕ ПРОСТРАНСТВА И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2004
  • Урличич Ю.М.
  • Дворкин В.В.
  • Виноградов А.А.
  • Аверин С.В.
RU2253128C1
СИСТЕМА ВЫСОКОТОЧНОЙ АВТОМАТИЧЕСКОЙ ПОСАДКИ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 2004
  • Урличич Юрий Матэвич
  • Дворкин Вячеслав Владимирович
  • Марков Сергей Сергеевич
  • Поваляев Егор Александрович
RU2287838C2
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1

RU 2 411 533 C1

Авторы

Урличич Юрий Матэвич

Немцев Вячеслав Иванович

Круглов Александр Викторович

Даты

2011-02-10Публикация

2008-11-05Подача