СПОСОБ ОДНОСТАДИЙНОГО ПОЛУЧЕНИЯ ИЗОПРЕНА ИЗ ИЗОБУТИЛЕНА И ФОРМАЛЬДЕГИДА С ИСПОЛЬЗОВАНИЕМ СВЧ-ИЗЛУЧЕНИЯ Российский патент 2011 года по МПК C07C11/18 C07C2/86 C07C2/80 C07C2/84 

Описание патента на изобретение RU2417977C1

Изобретение относится к области основного органического и нефтехимического синтеза, точнее каталитической дегидратации углеводородов, в частности расщеплению изобутилена и формальдегида с образованием изопрена под воздействием излучения сверхвысокочастотного диапазона и модифицированных катализаторов. Может быть использовано в нефтехимической промышленности.

Известны многочисленные способы получения изопрена из изобутилена и формальдегида, осуществляемые через различные промежуточные продукты. Сущность этих способов состоит в том, что исходные вещества реагируют в присутствии кислоты при повышенной температуре и давлении, обеспечивающем пребывание реагентов в жидкой фазе. Наибольшее распространение в промышленности получил способ синтеза изопрена через промежуточную стадию образования 4,4-диметил-1,3-диоксана (ДМД), включающий стадию жидкофазной конденсации изобутилена, содержащегося во фракции углеводородов С4, с формальдегидом в виде 20-40%-ного водного раствора с последующим выделением образовавшегося ДМД и разложением его над твердым кислотным катализатором в присутствии водяного пара [Огородников С.К., Идлис Е.С. Производство изопрена, - Л.: Химия, 1973, с.12-91]. Применение данного способа обеспечивает получение изопрена мономерной чистоты, позволяет совместить получение ДМД с извлечением изобутилена из С4-фракций, обеспечивает высокую производительность контактной аппаратуры. Однако недостатком этого способа являются значительные энергозатраты, связанные с расходом перегретого водяного пара на стадии разложения ДМД (мас. отношение Н2O/ДМД не менее 2,0) и при укреплении разбавленных растворов формальдегида, образующихся на обеих стадиях процесса.

Известен также способ получения изопрена из изобутилена и формальдегида, заключающийся в том, что предварительно выделенный из С4-фракции изобутилен в смеси с соединениями, легко образующими изобутилен, например, триметилкарбинолом (ТМК) или метил-трет-бутиловым эфиром (МТБЭ) реагирует с разбавленным раствором формальдегида при молярном соотношении изо-С4Н8/СН2O, большем 2,5-3,0, и температуре ≥100°С, а затем вся реакционная масса перемещается во второй реактор, где образовавшиеся промежуточные продукты - предшественники изопрена, такие как ДМД, 3-метилбутандиол-1,3 (МВД), изобутенилкарбинол (ИБК, 3-метил-3-бутен-1-ол), диоксановые спирты (ДС) и др., разлагаются с образованием изопрена, который отгоняют из зоны реакции вместе с непревращенным изобутиленом и частью воды. После выделения углеводородов этот поток вновь направляется в реактор синтеза предшественников изопрена. Поскольку технология не включает стадии выделения промежуточных продуктов, указанный процесс условно назван одностадийным синтезом изопрена из изобутилена и формальдегида (ОИФ) [Павлов С.Ю., Суровцев А.А. - Хим. пром-сть, 1997, 7, с.466]. Способ предусматривает предварительное выделение изобутилена из фракции углеводородов С4 путем гидратации его в реакторе, заполненном формованным катионитом, с подачей образующегося ТМК и изобутилена в реакторы I и II ступени.

Наличие избытка изобутилена в реакционной массе в обоих реакторах обеспечивает практически полную конверсию формальдегида, что исключает необходимость в проведении его рекуперации. Применение данного способа также обеспечивает получение изопрена мономерной чистоты, позволяет существенно снизить энергозатраты, по сравнению с двухстадийным процессом. Недостатками ОИФ являются: низкая производительность контактной аппаратуры, связанная с использованием большого избытка изобутилена (мольное отношение изо-С4Н8/СН20 не менее 2,5-3,0); низкая конверсия изобутилена, не превышающая 33-40%, и глубокая конверсия ТМК (70% и выше) приводит к значительным затратам на конденсацию и возврат непревращенного олефина в зону реакции; образование в реакторе I ступени наряду с ДМД и МБД таких реакционно-способных соединений, как ИБК, ДС и др. При температуре ≥150°С в условиях непрерывного процесса с рециклом водного потока эти соединения образуют стойкие суспензии, а затем смолообразные, каучукоподобные вещества, оседающие на стенках аппаратуры и трубопроводов, что приводит к забивкам и к останову процесса.

Наиболее близким техническим решением к заявляемому изобретению является способ каталитического дегидрирования бутенов под воздействием электромагнитного излучения СВЧ-диапазона [Патент №2117650 «Способ каталитического дегидрирования углеводородов» Бикбулатов И.Х., Даминев P.P., Шулаев Н.С., Кутузов П.И., Арсланова А.Х.]. В данном способе в качестве энергоносителя используется мощное электромагнитное поле СВЧ-диапазона (длинна электромагнитных волн 1<λ<10 см), облучающее реактор или генерируемое в нем. Электромагнитное излучение, поглощаемое катализатором, вызывает его разогрев, и при контакте с неразогретым сырьем происходит процесс дегидрирования. Используется хром-железо-цинковый, новый катализатор, в состав которого в преобладающем количестве входят: Сr2О3, Fе2O3, ZnO, а также SiO2, Со2О3. Недостатками данного способа являются то, что дегидрирование осуществляется постадийно и при высоких температурах (600-650°С), что приводит к значительным энергозатратам.

Изобретение решает техническую задачу снижения энергозатрат и повышения эффективности процесса. Указанная задача решается тем, что в способе получения изопрена путем взаимодействия исходного сырья при повышенной температуре с твердым катализатором с использованием СВЧ-излучения, с непрерывной отгонкой образующихся продуктов, конденсацией отгона, согласно изобретению в качестве твердого катализатора используют катализатор следующего состава, мас.%:

Р2O5 - 33-41

CaO - 39-45

NiO - 9-11,5

Сr2О3 - 6,5

SiO2 - 1,5-2,5

SO3 - 0,5-1,1

Fe2O3 - 0,1

Катализатор получают методом пропитки предварительного отформованного носителя на основе оксидов кальция и никеля. В качестве пропиточного раствора используется 50% ортофосфорная кислота. Время пропитки 2 часа. Затем катализатор подвергается сушке в муфельной печи при температуре 400°С в течение 2 часов.

На чертеже показана схема лабораторной установки получения изопрена одностадийным способом. Установка состоит из магнетрона - 1, микроволновой камеры - 2, реактора, наполненного твердым катализатором - 3, согласователя нагрузки - 4, холодильников - 5, приемной камеры для конденсированного изопрена - 6. Поток 1 - подаваемые исходные вещества, поток 2 - продукты реакции, поток 3 - неконденсированные газы из холодильника, потоки 4, 6, 8 -холодная вода, потоки 5, 7, 9 - нагретая вода после холодильников и согласователя нагрузки.

Смесь изобутилена и формальдегида подается в кубовую часть реактора, где под воздействием электромагнитного излучения СВЧ-диапазона испаряется и поступает в реакционную зону с предварительно разогретым катализатором. Затем продукты реакции, отобранные из верхней части реакционной колонны, проходит через холодильник, где конденсируются изопрен, изобутилен и промежуточные продукты реакции.

Экспериментальные данные показывают, что выход изопрена при использовании катализатора составляют около 20-25 мас.% (см. таблицу).

Существенными отличительными особенностями предлагаемого способа от способа-прототипа являются:

- использование модифицированных и новых экспериментальных видов катализаторов;

- осуществление синтеза изопрена в одну стадию, в объеме одной реакционной зоны.

Преимуществами предлагаемого способа по сравнению с прототипом являются:

- более простое технологическое оформление процесса, осуществляемого в одном реакционном объеме;

- уменьшение энергозатрат в связи с меньшей температурой процесса.

Разработка может применяться в нефтехимической промышленности, на предприятиях по производству синтетического каучука.

Выход изопрена в зависимости от скорости подачи и температуры Объемная скорость подачи, W ч-1 Температура, °С Выход изопрена, мас.% 100 150 16 180 22 210 25 240 19 120 150 18 180 23 210 25 240 20 150 150 15 180 20 210 22 240 19 200 150 6 180 9 210 12 240 8

Похожие патенты RU2417977C1

название год авторы номер документа
СПОСОБ ОДНОСТАДИЙНОГО ПОЛУЧЕНИЯ ИЗОПРЕНА ИЗ ИЗОБУТИЛЕНА И ФОРМАЛЬДЕГИДА С ИСПОЛЬЗОВАНИЕМ СВЧ-ИЗЛУЧЕНИЯ 2009
  • Бикбулатов Игорь Хуснутович
  • Даминев Рустэм Рифович
  • Юнусов Джалиль Шамилевич
  • Бахонина Елена Игоревна
RU2417978C1
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА 2000
RU2177469C1
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА 2002
RU2230054C2
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА 2001
RU2184107C1
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА 2001
RU2235709C2
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА 2001
RU2197461C2
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА 2004
RU2266888C1
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА 2004
RU2261855C1
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА 1990
  • Павлов С.Ю.
  • Горшков В.А.
  • Чуркин В.Н.
  • Смирнов В.А.
  • Титова Л.Ф.
  • Казаков В.П.
  • Андреев В.А.
  • Бытина В.И.
SU1811155A1
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА 2011
RU2458900C1

Реферат патента 2011 года СПОСОБ ОДНОСТАДИЙНОГО ПОЛУЧЕНИЯ ИЗОПРЕНА ИЗ ИЗОБУТИЛЕНА И ФОРМАЛЬДЕГИДА С ИСПОЛЬЗОВАНИЕМ СВЧ-ИЗЛУЧЕНИЯ

Изобретение относится к способу одностадийного получения изопрена из изобутилена и формальдегида путем взаимодействия исходного сырья при повышенной температуре с твердым катализатором с использованием СВЧ-излучения, с непрерывной отгонкой образующихся продуктов, конденсацией отгона характеризующемуся тем, что в качестве твердого катализатора используют катализатор следующего состава, мас.%: P2O5 - 33-41%, CaO - 39-45%, NiO - 9-11,5%, Cr2O3 - 6,5%, SiO2 - 1,5-2,5%, SO3 - 0,5-1,1%, Fe2O3 - 0,1%. Применение настоящего способа позволяет снизить энергозатраты и повысить эффективность процесса. 1 табл., 1 ил.

Формула изобретения RU 2 417 977 C1

Способ одностадийного получения изопрена из изобутилена и формальдегида путем взаимодействия исходного сырья при повышенной температуре с твердым катализатором с использованием СВЧ-излучения, с непрерывной отгонкой образующихся продуктов, конденсацией отгона, отличающийся тем, что в качестве твердого катализатора используют катализатор следующего состава, мас.%:
Р2О3 33-41 СаО 39-45 NiO 9-11,5 Сr2O3 6,5 SiO2 1,5-2,5 SO3 0,5-1,1 Fe2O3 0,1

Документы, цитированные в отчете о поиске Патент 2011 года RU2417977C1

СПОСОБ КОНВЕРСИИ МЕТАНА ПЛАЗМЕННО-КАТАЛИТИЧЕСКИМ ОКИСЛЕНИЕМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Блинов Леонид Михайлович
  • Долголаптев Анатолий Васильевич
  • Кустов Леонид Модестович
RU2315802C2
СПОСОБ КОНВЕРСИИ ЛЕГКИХ УГЛЕВОДОРОДОВ В БОЛЕЕ ТЯЖЕЛЫЕ 1999
  • Медведев Ю.В.
  • Ремнев Г.Е.
  • Сметанин В.И.
  • Ширшов А.Н.
RU2149884C1
JP 9201528 A, 05.08.1997
Способ проверки аппаратов защиты от дугового пробоя и искровых промежутков 2020
  • Тюрин Александр Николаевич
  • Солуянов Юрий Иванович
  • Шмуклер Марк Иосифович
  • Ившин Игорь Владимирович
RU2739576C1
JP 62164634 A, 21.07.1987.

RU 2 417 977 C1

Авторы

Бикбулатов Игорь Хуснутович

Даминев Рустэм Рифович

Юнусов Джалиль Шамилевич

Бахонина Елена Игоревна

Даты

2011-05-10Публикация

2009-08-11Подача