Способ электролитического получения кремния из расплавленных солей Российский патент 2021 года по МПК C25C3/34 C25C5/04 B82B1/00 

Описание патента на изобретение RU2760027C1

Изобретение относится к металлургии полупроводниковых материалов, в частности, к электролитическому получению кремния из расплавленных солей.

Кремний является неотъемлемой частью современной электроники, солнечной энергетики и находит все большее применение в новых чистых и относительно безопасных отраслях малой энергетики. Кремний и композиционные материалы на его основе могут быть использованы в новых электрохимических устройствах преобразования и накопления энергии с улучшенными эксплуатационными характеристиками.

В настоящее время кремний получают из силана и хлорсиланов. Несмотря на простоту и возможность получения высокочистого кремния способы являются ограниченными в плане получения субмикронных и наноразмерных осадков кремния заданной структуры, необходимых для создания новых устройств: литий-ионных аккумуляторов, элементов солнечных батарей и др.

Для управляемого получения кремния заданного размера и морфологии известны способы, включающие электроосаждение кремния из расплавленных солей. В качестве расплавленных солей используют смеси галогенидов щелочных и щелочноземельных металлов, а источником кремния выступают кристаллы кремния, либо соединения кремния (гексафторсиликаты натрия и калия, тетрахлорид кремния, диоксид кремния).

Перспективными позиционируются способы электролитического получения кремния из расплавленных солей, включающие электролиз расплава CaCl2-CaO с добавкой SiO2 при температуре 800-850°С. Электролиз ведут с использованием твердых либо жидкометаллических катодов при катодной плотности тока до 100 мА/см2 (US 2004238372, опубл. 02.12.2004 г.) [1]. Способы характеризуются простотой отмывки полученного кремния от соли, относительно низкой химической агрессивностью расплава по отношению к конструкционным материалам, что позволяет получать кремний с меньшим содержанием примесей, а также возможность использования кислородвыделяющих анодов.

Однако использование гигроскопичной соли CaCl2 приводит к необходимости тщательной очистки соли от влаги и дальнейшего осуществления всех операций, включая электролиз расплава CaCl2-CaO в строго контролируемой атмосфере высокочистого инертного газа. Это приводит к усложнению и значительному удорожанию способа получения кремния.

Среди расплавленных солей для электролитического рафинирования или получения кремния наибольшее распространение получили фторидсодержащие системы, позволяющие вести процесс получения кремния при температуре от 550 до 700°С. Благодаря высокому содержанию ионов фтора такие расплавленные системы являются хорошими растворителями всех вышеперечисленных соединений кремния, что необходимо для поддержания стабильной и относительно высокой концентрации электроактивных кремнийсодержащих ионов при электролитическом получении кремния.

Однако фторидсодержащие расплавленные системы характеризуется повышенной химической активностью по отношению к конструкционным материалам и получаемому кремнию, сложностью отмывки получаемого кремния от таких солей как LiF и NaF и необходимостью тщательной очистки фторидных солей от примесей перед использованием.

Так, известен способ электролитического получения кремния из расплавленных солей, включающий электролиз расплава CsCl-KCl-KF с добавкой K2SiF6 при температуре 550-750°С (RU 2399698, опубл. 20.09.2010 г.) [2]. Электроосаждение кремния ведут на твердых катодах при катодной плотности тока до 150 мА/см2. Использование вышеуказанного состава расплава позволяет снизить упругость паров кремнийсодержащих соединений и, соответственно, его потери через газовую фазу в процессе электролиза. Помимо этого, как было отмечено выше, указанный расплав относительно легко отмывается от кремниевых осадков. Тем не менее, использование в составе расплава гигроскопичного KF в количестве 5-50 мас.% приводит, во-первых, к необходимости предварительной очистки KF или готового расплава CsCl-KCl-KF от влаги и электроположительных примесей в составе KF, и, во-вторых, к повышенной коррозии конструкционных материалов реактора.

Наиболее близким к заявляемому является способ электролитического получения кремния из расплавленных солей, включающий электролиз расплавленного галогенидного электролита KCl с добавкой от 1 до 5 мас.% K2SiF6 при температуре 790-800°С с использованием растворимого кремниевого анода (Гевел Т.А., Жук С.И., Устинова Ю.А., Суздальцев А.В., Зайков Ю.П. Электровыделение кремния из расплава KCl-K2SiF6 // Расплавы, 2021, №2, с. 187-198.) [3]. Электроосаждение кремния в этом способе ведут на твердых катодах при катодном перенапряжении до 0,25 В и катодной плотности тока до 30 мА/см2.

Благодаря отсутствию в исходном расплаве фторида калия исключается необходимость тщательной очистки расплава от влаги и электроположительных примесей перед электролизом, обеспечивается возможность получения более чистого кремния и снижается химическая агрессивность компонентов расплава по отношению к материалам реактора. Несмотря на принципиальную возможность получения кремния способ характеризуется таким существенным недостатком как неустойчивость K2SiF6 при температуре осуществления способа. По этой причине осуществление способа ограничивается крайне низким равновесным содержанием кремнийсодержащих электроактивных ионов в расплаве, сложностью управления морфологией осадков и относительно низкими скоростями электроосаждения кремния.

Задачами изобретения является стабилизация параметров электролитического получения кремния из расплавленных солей, повышение скорости электроосаждения кремния при снижении химической агрессивности компонентов расплавленного электролита.

Поставленная задача решается тем, что способ электролитического получения кремния из расплавленных солей, также, как и прототип, включает электролиз расплавленного галогенидного электролита с добавкой K2SiF6, при этом процесс ведут с использованием растворимого кремниевого анода при катодном перенапряжении не более 0,25 В. Способ отличается тем, что в качестве расплавленного галогенидного электролита используют смесь солей мас. % 10-60 KCl и 40-90 CsCl с добавкой до 50 мас.% K2SiF6, при этом электролиз ведут при температуре от 610 до 750°С, катодной плотности тока не выше 120 мА/см2.

Сущность способа заключается в следующем. В реакторе из графита или стеклоуглерода смесь солей в соотношении мас. %:

KCl от 10 до 60;

CsCl от 40 до 90;

K2SiF6 до 50

нагревают до температуры от 610 до 750°С, после чего ведут электролиз полученной расплавленной смеси с использованием твердого катода и растворимого кремниевого анода. Диапазоны соотношений солей выбраны на основании целевого температурного диапазона (600-750°С) и диаграмм состояния систем: бинарной KCl-CsCl и квазибинарной KCl-K2SiF6.

В указанных расплавленных солях при катодной плотности тока не выше 120 мА/см2 и катодном перенапряжении не более 0,25 В на твердом катоде выделяется кремний. Превышение этих параметров приводит к совместному электровосстановлению ионов кремния и щелочного металла, что негативно скажется на стабильности и показателях электролиза. На аноде при этом протекает анодное растворение кремния. В зависимости от катодной плотности тока могут быть получены сплошные и субмикронные осадки кремния.

Благодаря использованию в качестве расплавленного галогенидного электролита смеси солей KCl-CsCl-K2SiF6 в сравнении с прототипом обеспечивается снижение температуры электролитического получения кремния, что, в свою очередь, повышает устойчивость кремнийсодержащих электроактивных ионов в расплаве, обеспечивая вероятность электроосаждения кремния устойчивой морфологии и повышение токов электроосаждения кремния. При этом в составе расплавленного галогенидного электролита используются только негигроскопичные хлоридные соли с пониженной химической активностью по отношению к материалам реактора. Это исключает необходимость тщательной предварительной подготовки солей перед приготовлением электролита и обеспечивает возможность получения высокочистого кремния.

Технический результат, достигаемый заявленным способом, заключается в снижении температуры электролитического получения кремния, а также упрощении процесса получения кремния за счет исключения необходимости тщательной предварительной подготовки солей перед приготовлением электролита при обеспечении возможности получения высокочистого кремния.

Изобретение иллюстрируется таблицей, где приведены параметры и результаты электролитического осаждения кремния на стеклоуглероде, а также рисунками, где на фиг. 1 приведена микрофотография типового осадка кремния, полученного при электролизе расплава мас. % 50KCl-50CsCl с добавкой 5 мас. % K2SiF6 при катодном перенапряжении 0,10 В и температуре 650°С, а на фиг. 2 - микрофотография типового осадка кремния, полученного при электролизе расплава мас. % 50KCl-50CsCl с добавкой 5 мас. % K2SiF6 при катодном перенапряжении 0,15 В и температуре 650°С.

Для экспериментальной апробации была выполнена серия электролизных испытаний, в которых варьировали состав расплава, температуру и катодное перенапряжение. Расплавленные электролиты готовили из предварительно очищенных индивидуальных солей KCl, CsCl и K2SiF6 квалификации «х.ч.» (Реахим, Россия) в стеклоуглеродном тигле, который размещали в кварцевой реторте, продуваемой высокочистым аргоном. Перед испытаниями катод (стеклоуглерод), анод (поликристаллический металлургический кремний), квазиэлектрод сравнения (кремний чистотой 99,9%) и термопару погружали в расплавленный электролит KCl-CsCl-K2SiF6, жестко фиксируя их во фторопластовой крышке реторты. После погружения электродов в расплавленный электролит вели электролиз в потенциостатическом режиме.

Напряжение между электродами подавали при помощи ИПТ RIGOL DP832 с пределом по току 10 А.

После электролизных испытаний осадки очищали от следов электролита путем многократной промывки в бидистилляте в условиях ультразвукового диспергирования. Для этого применяли ультразвуковой диспергатор SONOPULS UW mini 20.

Содержание примесей в полученных осадках кремния определяли атомно-эмиссионным методом с использованием спектрометра iCAP 6300 Duo Spectrometer (Thermo Scientific, США). Микрофотографии осадков кремния фиксировали на сканирующем электронном микроскопе Phenom ProX (Phenom-World, Нидерланды), а гранулометрический состав определяли с использованием лазерного дифракционного анализатора Malvern Mastersizer 2000 (Malvern Instruments, Великобритания).

В Таблице приведены параметры и результаты электролизных испытаний, а на фиг. 1 и фиг. 2 микрофотографии типовых осадков кремния. В зависимости от состава расплавленного электролита, температуры и катодного перенапряжения были получены осадки кремния чистотой выше 99,9% со средним размером от 0,1 до 10 мкм. Стоит отметить, что в сравнении с прототипом отмечается повышение катодной плотности электроосаждения кремния и стабилизация среднего размера частиц полученного кремния.

Таким образом, заявленный способ позволяет получать высокочистый кремний управляемой морфологии при упрощении процесса за счет снижении температуры электролиза и исключения необходимости тщательной предварительной подготовки солей перед приготовлением электролита.

Похожие патенты RU2760027C1

название год авторы номер документа
Способ электролитического получения кремния из расплавленных солей 2020
  • Гевел Тимофей Анатольевич
  • Жук Сергей Иванович
  • Суздальцев Андрей Викторович
  • Зайков Юрий Павлович
RU2751201C1
Способ электроосаждения сплошных осадков кремния из расплавленных солей 2022
  • Гевел Тимофей Анатольевич
  • Горшков Леонид Вениаминович
  • Парасотченко Юлия Александровна
  • Суздальцев Андрей Викторович
  • Зайков Юрий Павлович
RU2795477C1
Электролитический способ получения кремния из расплавленных солей 2021
  • Устинова Юлия Александровна
  • Павленко Ольга Борисовна
  • Суздальцев Андрей Викторович
  • Зайков Юрий Павлович
RU2775862C1
Способ электролитического получения микроразмерных пленок кремния из расплавленных солей 2022
  • Парасотченко Юлия Александровна
  • Павленко Ольга Борисовна
  • Суздальцев Андрей Викторович
  • Зайков Юрий Павлович
RU2797969C1
Электролитический способ получения наноразмерных осадков кремния в расплавленных солях 2021
  • Гевел Тимофей Анатольевич
  • Трофимов Алексей Алексеевич
  • Суздальцев Андрей Викторович
  • Зайков Юрий Павлович
RU2770846C1
Электролитический способ получения наноразмерного кремния из иодидно-фторидного расплава 2022
  • Шмыгалев Александр Сергеевич
  • Худорожкова Анастасия Олеговна
  • Лаптев Михаил Вячеславович
  • Аписаров Алексей Петрович
  • Боймурадова Шукрона Кахоровна
  • Исаков Андрей Владимирович
  • Зайков Юрий Павлович
RU2778989C1
СПОСОБ ПОЛУЧЕНИЯ КРЕМНИЯ НАНО- ИЛИ МИКРОВОЛОКНИСТОЙ СТРУКТУРЫ 2009
  • Чемезов Олег Владимирович
  • Виноградов-Жабров Олег Николаевич
  • Батухтин Виктор Павлович
  • Аписаров Алексей Петрович
  • Исаков Андрей Владимирович
  • Зайков Юрий Павлович
RU2399698C1
Электрохимический способ получения микрокристаллического порошка кремния 2018
  • Кушхов Хасби Билялович
  • Лигидова Марина Нургалиевна
  • Маржохова Марьяна Хажмусовна
  • Мамхегова Рузана Мухамедовна
RU2671206C1
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ СПЛОШНЫХ СЛОЕВ КРЕМНИЯ 2012
  • Чемезов Олег Владимирович
  • Аписаров Алексей Петрович
  • Исаков Андрей Владимирович
  • Зайков Юрий Павлович
RU2491374C1
СПОСОБ ПОЛУЧЕНИЯ НАНО- И МИКРОСТРУКТУРНЫХ ПОРОШКОВ И/ИЛИ ВОЛОКОН КРИСТАЛЛИЧЕСКОГО И/ИЛИ РЕНТГЕНОАМОРФНОГО КРЕМНИЯ 2012
  • Чемезов Олег Владимирович
  • Виноградов-Жабров Олег Николаевич
  • Поволоцкий Илья Моисеевич
  • Зайков Юрий Павлович
RU2486290C1

Иллюстрации к изобретению RU 2 760 027 C1

Реферат патента 2021 года Способ электролитического получения кремния из расплавленных солей

Изобретение относится к металлургии полупроводниковых материалов, в частности, к электролитическому получению кремния из расплавленных солей. Способ включает электролиз расплавленного галогенидного электролита, в качестве которого используют смесь солей мас.% 10-60 KCl и 40-90 CsCl с добавкой до 50 мас.% K2SiF6. Электролиз ведут при температуре от 610 до 750°С и катодной плотности тока не выше 120 мА/см2, при катодном перенапряжении не более 0,25 В с использованием растворимого кремниевого анода. Способ позволяет снизить температуру электролитического получения кремния, а также упростить процесс получения кремния за счет исключения необходимости тщательной предварительной подготовки солей перед приготовлением электролита с обеспечением возможности получения высокочистого кремния. 2 ил., 1 табл.

Формула изобретения RU 2 760 027 C1

Способ электролитического получения кремния из расплавленных солей, включающий электролиз расплавленного галогенидного электролита с добавкой K2SiF6 при катодном перенапряжении не более 0,25 В с использованием растворимого кремниевого анода, отличающийся тем, что в качестве расплавленного галогенидного электролита используют смесь солей мас.% 10-60 KCl и 40-90 CsCl с добавкой до 50 мас.% K2SiF6, при этом электролиз ведут при температуре от 610 до 750°С, катодной плотности тока не выше 120 мА/см2.

Документы, цитированные в отчете о поиске Патент 2021 года RU2760027C1

Гевел Т.А
и др
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Расплавы., 2021, N2, c.187-198, принята к публикации 07.12.2020
СПОСОБ ПОЛУЧЕНИЯ КРЕМНИЯ НАНО- ИЛИ МИКРОВОЛОКНИСТОЙ СТРУКТУРЫ 2009
  • Чемезов Олег Владимирович
  • Виноградов-Жабров Олег Николаевич
  • Батухтин Виктор Павлович
  • Аписаров Алексей Петрович
  • Исаков Андрей Владимирович
  • Зайков Юрий Павлович
RU2399698C1
СПОСОБ ПОЛУЧЕНИЯ НАНО- И МИКРОСТРУКТУРНЫХ ПОРОШКОВ И/ИЛИ ВОЛОКОН КРИСТАЛЛИЧЕСКОГО И/ИЛИ РЕНТГЕНОАМОРФНОГО КРЕМНИЯ 2012
  • Чемезов Олег Владимирович
  • Виноградов-Жабров Олег Николаевич
  • Поволоцкий Илья Моисеевич
  • Зайков Юрий Павлович
RU2486290C1
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ СПЛОШНЫХ СЛОЕВ КРЕМНИЯ 2012
  • Чемезов Олег Владимирович
  • Аписаров Алексей Петрович
  • Исаков Андрей Владимирович
  • Зайков Юрий Павлович
RU2491374C1
CN 111850612 A, 30.10.2020
CN 108690995 A, 23.10.2018.

RU 2 760 027 C1

Авторы

Гевел Тимофей Анатольевич

Жук Сергей Иванович

Вахромеева Анастасия Евгеньевна

Суздальцев Андрей Викторович

Зайков Юрий Павлович

Даты

2021-11-22Публикация

2021-04-13Подача