РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pACYC-LANS(KM), ШТАММ Escherichia coli BL21(DE3), ТРАНСФОРМИРОВАННЫЙ РЕКОМБИНАНТНОЙ ДНК pACYC-LANS(KM), И СПОСОБ ПОЛУЧЕНИЯ РЕКОМБИНАНТНОЙ L-АСПАРАГИНАЗЫ Erwinia carotovora Российский патент 2012 года по МПК C12N15/55 

Описание патента на изобретение RU2441916C1

Группа изобретений относится к биотехнологии, в частности к генетической инженерии, и может быть использована для получения L-аспарагиназы Erwinia carotovora, обладающей цитотоксической активностью в отношении линий лейкозных клеток и солидных опухолей человека.

Бактериальные аспарагиназы 2-го класса (К.Ф. 3.5.1.1) являются периплазматическими ферментами, катализирующими гидролиз L-аспарагипа с образованием L-аспарагиновой кислоты и аммония. Две аспарагиназы, одна из Escherichia coli (EcA), другая из Erwinia chrysanthemi (ErA), уже более 30 лет широко используются в клинической практике в качестве противолейкозных препаратов для лечения, прежде всего, острой лимфобластной лейкемии, а также не-Ходжкинской лимфомы и лимфомы Беркита. Данные фармакогеномных и фармакопротсомных исследований указывают на возможность использования этого фермента и для лечения солидных опухолей. Считается, что оптимальной для клинического применения аспарагиназой должен являться фермент с высокой аспарагиназной и низкой глутаминазной активностями. Согласно этим критериям поиск наиболее эффективной для химиотерапии опухолей аспарагиназы продолжается в течение более 30 лет, однако до сих пор не достигнуто сколько-нибудь заметного позитивного результата.

L-Аспарагиназа из диких и рекомбинантных штаммов Erwinia carotovora представляет собой белок, построенный из 4-х нековалентно связанных идентичных субъединиц с мол. массой около 35 кДа, мономер фермента состоит из приблизительно 330 аминокислот. Значение удельной активности аспарагиназы Erwinia carotovora по данным различных авторов варьирует в диапазоне от 310 до 550 МЕ/мг белка. Мономер аспарагиназы не обладает каталитической активностью, поскольку активный сайт фермента формируется при образовании димера и расположен на его интерфейсе. Дальнейшая олигомеризация фермента приводит к образованию тетрамера, содержащего 4 идентичных некооперативных активных центра. В большинстве случаев ассиметричная кристаллическая ячейка аспарагиназы представляет собой гомотетрамер с С2-симметрией. Несмотря на то, что димер обладает всеми необходимыми структурными элементами для катализа, принято считать, что ферментативной активностью обладает только тетрамер аспарагиназы.

Известны, например, рекомбинатные полипептиды, имеющие аспарагиназную активность и повышенную термостабильность (US 7666652, 23.02.2010).

Известен способ промышленного получения рекомбинатного белка L-аспарагиназы ЕсА2 медицинского назначения, а также плазмида и рекомбинантный штамм Bacillus sereus для его получения (RU 2313575, 27.12.2007).

Известен ген L-аспарагиназы Erwinia carotovora и штамм Escherichia coli ВКПМ № В-8174 - продуцент L-аспарагипазы (RU 2221868, 20.01.2004).

Известна рекомбинантная плазмида pACYC_LANS, содержащая природную последовательность гена L-аспарагиназы Erwinia carotovora, которая находится под контролем промотора и терминатора РНК-полимеразы фага Т7 и кодирует полноразмерный предшественник фермента с сигнальным пептидом для экспорта белка в периплазму с последующим процессингом. Описан также способ получения и очистки рекомбинантной L-аспарагиназы (RU 2224797, 27.02.2004).

ECAR_LANS совмещает основные преимущества аспарагиназ ErA и ЕсА2, применяемых при лечении лейкозов. Этот фермент имеет такую же высокую специфичность к аспарагину, как и ЕсА2, значительно более низкое сродство к глутамину, а его удельная активность сравнима с активностью ErA. ECAR_LANS стабильна в широком диапазоне pH, при физиологических значениях pH активность фермента составляет 93-96% от максимальной величины. Плазмида pACYC_LANS имеет два гена резистентности к антибиотикам: bla (ApR) и kan (KmR), отвечающие соответственно за устойчивость к ампициллину и канамицину. При промышленном выращивании штамма продуцента аспарагиназы в качестве селективного агента в настоящее время используют только один антибиотик - ампициллин.

Однако β-лактамаза, обеспечивающая устойчивость к ампициллину, равно как и аспарагиназа, являются белками с периплазматической локализацией. Следовательно, активная выработка клетками β-лактамазы должна негативно сказываться на накоплении в периплазме аспарагиназы. Кроме того, процесс ферментации занимает много времени (15-17 часов). Недостатком известной плазмиды является также невысокий уровень биосинтеза.

Задачей настоящей группы изобретений, объединенных общим изобретательским замыслом, является увеличение уровня биосинтеза полипептида rec-ASP-ECAR, создание более продуктивного штамма-продуцента L-аспарагиназы и разработка простого способа получения рекомбинантной аспарагиназы с высоким выходом и чистотой целевого продукта.

Поставленная задача решается описываемой рекомбинантной плазмидной ДНК pACYC_LANS(KM) для экспрессии в клетках Escherichia coli фермента L-аспарагиназы Erwinia carotovora (rec-ASP-ECAR), имеющей молекулярную массу 29,61 Md, размер 4563 п.н., содержащей: фрагмент BamHI-NsbI (FspI) вектора pACYC177, несущий участок начала репликации плазмиды р15А и ген kan, обеспечивающий устойчивость к канамицину; BglII-PdiI (NaeI) - фрагмент вектора рЕТ23а, несущий промотор и терминатор РНК-полимеразы фага Т7 и полилинкер, в котором по сайтам XbaI - BamHI клонирован NheI-BamHI фрагмент вектора pBAD24, несущий последовательность Шайн-Дальгарно с клонированным EcoRI-фрагментом хромосомы Erwinia carotovora размером 1135 п.н., содержащим ген L-аспарагиназы Erwinia carotovora, при этом рекомбинантная плазмида pACYC_LANS(KM) содержит уникальные сайты узнавания рестрикционными эндонуклеазами, имеющими следующие координаты: Kpn I - 1146, BamHI - 1155, Nco - 1142, NotI - 1186, PvuI - 3525, Sac - 1167 п.н.

Поставленная задача решается также описываемым штаммом Escherichia coli BL21(DE3), трансформированным рекомбинантной ДНК pACYC_LANS(KM), охарактеризованной выше, который является продуцентом рекомбинантной L-аспарагиназы Erwinia carotovora.

Поставленная задача решается также описываемым способом получения рекомбинантной L-аспарагиназы Erwinia carotovora, заключающимся в том, что культивируют штамм-продуцент E.coli, трансформированный рекомбинантной плазмидой pACYC_LANS(KM), который охарактеризован выше, в оптимальных для синтеза данного фермента условиях, выделяют сконцентрированную биомассу, подвергают ее разрушению на Френч-Прессе, высаливают целевой продукт из полученного бесклеточного экстракта сернокислым аммонием в зоне 20-60% насыщения, проводят обессоливание сульфат-аммонийной фракции на колонке с Sephadex G-50, обессоленную фракцию подвергают ионообменной хроматографии на CM-Sepharose FF, осуществляют концентрирование целевого продукта в два этапа: вначале на колонке с DEAE-сорбентом, а затем на колонке с CM-Sepharose и лиофилизуют.

Предпочтительно культивирование штамма осуществляют при 37°С в питательной среде на основе бульона LB-M9 при рН=7, культуральную жидкость после охлаждения подвергают мембранному концентрированию и сепарации.

Заявленную рекомбинантную плазмиду, физическая и генетическая карта которой представлены на фиг.1, получают с помощью генно-инженерных манипуляций из плазмиды pACYC_LANS (описанной нами в RU 2224797, и принятой за прототип) путем удаления гена резистентности к ампициллину. В таблице 1 представлены уникальные сайты узнавания рестрикционными эндонуклеазами на ДНК плазмиды pACYC_LANS(KM).

Высокий уровень синтеза целевого полипептида обеспечивается тем, что плазмида pACYC_LANS(KM) лишена гена устойчивости к ампициллину.

Штамм-продуцент rec-ASP-ECAR получают путем трансформации компетентных клеток E.coli BL21(DE3) сконструированной рекомбинантной плазмидной ДНК pACYC_LANS(KM).

Полученный нами штамм бактерий, несущий плазмиду pACYC_LANS(KM), депонированный в ВКМП под коллекционным номером № В-10370, характеризуется следующими признаками:

Морфологические признаки: Клетки палочковидной формы, грамотрицательные, неспороносные.

Культуральные признаки: клетки хорошо растут на обычно используемых питательных средах. Время генерации около 30 мин в жидкой LB-среде. На 1,5%-ном питательном агаре «Дифко» образуются гладкие, серые, блестящие, круглые с ровным краем колонии. При росте на агаризованной LB-среде колонии круглые, гладкие, полупрозрачные, блестящие, серые, край ровный; диаметр колоний 3-5 мм; консистенция пастообразная. Рост в жидкой среде LB характеризуется равномерным помутнением среды.

Физиолого-биохимические признаки:

Клетки штамма продуцента могут расти в диапазоне температур 20-42°С, при этом оптимум составляет 37°С. Наиболее благоприятные для роста значения pH находятся в интервале 6,8-7,2. При росте в аэробных условиях культура может усваивать азот как органических соединений (пептон, триптон, аминокислоты, дрожжевой экстракт), так и аммонийных и нитратных солей. Углерод усваивается в форме углеводов и аминокислот.

Устойчивость к антибиотикам. Клетки проявляют устойчивость к канамицину (до 50 мкг/мл), обусловленную наличием в плазмиде pACYC_LANS(KM) гена kan.

Способ, условия и состав среды для хранения штамма. LB-бульон с 15% глицерином, при температуре -70°С, в криовиалах.

Существенными отличиями заявляемого способа получения от прототипа являются: использование более продуктивного нового штамма, оптимизация условий его культивирования и приемы выделения и очистки получаемой субстанции. Штамм Е.coli BL21(DE3)/pACYC_LANS(KM) обеспечивает устойчивый синтез полипептида L-аспарагиназы Erwinia carotovora с активностью не менее 95-102 МЕ/мл культуральной среды, что обуславливает высокую технологичность процесса.

Перечень фигур, иллюстрирующих изобретение.

На фиг.1. представлена физическая и генетическая карта рекомбинантной плазмиды pACYC_LANS(KM).

На фиг.2. - полная нуклеотидная последовательность гена L-аспарагиназы Erwinia carotovora, инициирующий и терминирующий кодоны выделены жирным шрифтом.

На фиг.3 - нуклеотидная последовательность гена lanS и аминокислотная последовательность L-аспарагиназы Erwinia carotovora.

На фиг.4 - картина рестрикционного расщепления плазмиды pACYC_LANS.

Заявленный штамм-продуцент Escherichia coli BL(DE3)/pACYC_LANS(KM) депонирован в ВКМП под коллекционным № В-10370.

Изобретение иллюстрируется следующими примерами:

Пример 1. Конструирование рекомбинантной плазмиды pACYC_LANS(KM).

Плазмида pACYC_LANS, используемая в настоящее время при получении аспарагиназы, имеет два гена резистентности к антибиотикам: bla (ApR) и kan (KmR), отвечающие соответственно за устойчивость к ампициллину и канамицину.

Для удаления из исходной плазмиды гена устойчивости к ампициллину ~10 нг ДНК плазмиды pACYC_LANS в 20 мкл расщепляют одновременно рестриктазами PdiI и NsbI. После этого ферменты инактивируют прогреванием при 65°С в течение 20 мин и проводят реакцию самолигирования (Self-circularization) в объеме 200 мкл. Лигазной смесью трансформируют штамм E.coli XLI Blue. Среди полученных клонов отбирают устойчивые к канамицину и чувствительные к ампициллину клоны. Из отобранных клонов выделяют плазмиды и проводят их рестрикционный анализ.

Структуру клонированного гена в отобранных клонах подтверждают определением нуклеотидной последовательности с использованием набора Cycle ReaderTM DNA Sequencing Kit (Fermentas, Литва). В результате получают экспрессионную плазмиду pACYC_LANS (KM) (фиг.1).

Получено 10 клонов E.coli BL21(DE3) с делегированным геном устойчивости к ампициллину (КМ).

По результатам проверки аспарагиназной активности у данных клонов для дальнейшего изучения отбирают наиболее активные клоны pACYC_LANS (KM).

На фиг.4 приведена картина рестрикционного расщепления плазмиды pACYC_LANS.

Анализ распределения ДНК-фрагментов плазмиды pACYC_LANS при рестриктазном гидролизе (см. фиг 4. и таблицу 1) указывает на структурную целостность плазмиды.

Пример 2. Получение штамма-продуцента.

Рекомбинантной плазмидной ДНК pACYC_LANS(KM) трансформируют компетентные клетки Escherichia coli BL21(DE3) («Novagen» Cat. №69387-3) и после выращивания рекомбинантных клонов на LB-агаре с канамицином при 37°С получают штамм-продуцент полипептида rec-ASP_BCAR.

Пример 3. Сравнительные данные продуктивности штаммов с плазмидами pACYC_LANS(KM) и pACYC_LANS.

Для сравнительного изучения продуктивности штаммов с плазмидами pACYC_LANS(KM) и pACYC_LANS проводят культивирование в колбах объемом 250 мл, содержащих 50 мл стандартной среды LB, при температуре 37°С и скорости перемешивания 180 об/мин. Посевной материал (ночная культура, выращенная на той же среде и в тех же условиях) вносят в среду в соотношении 1:100. Клон pACYC_LANS(KM) выращивают в присутствии 50 мг/мл канамицина. В качестве контроля используют клон с исходной плазмидой pACYC_LANS, культивируемый в присутствии одновременно ампициллина и канамицина. Клетки выращивают до ОП600=2,0-2,3, после чего вносят индуктор (ИПТГ) до конечной концентрации 0,5 мМ. Результаты сравнительного изучения продуктивности представлены в таблице 2. Как следует из таблицы 2, клон штамма-продуцента E.coli BL21 (DE3)/pACYC_LANS(KM) характеризуется примерно на 25% более высокими величинами накопления активности фермента в клетках и продуктивности, чем контрольные клоны E.coli BL21(DE3)/pACYC_LANS. Клон E.coli BL21 (DE3)/pACYC_LANS(KM) отбирают для выращивания рекомбинантного штамма E.coli в ферментере.

Пример 4. Выращивание штамма-продуцента E.coli BL21 (DE3)/pACYC_LANS(KM) в ферментере.

Единичную колонию рекомбинантного штамма E.coli BL21 (DE3)/pACYC_LANS(KM) инокулируют в 5 мл LB-среды, содержащей 20 мкг/мл канамицина, и выращивают в течение ночи при перемешивании со скоростью 180 об/мин и температуре 37°С. Инокулят для ферментации готовят, пересевая адаптированную культуру в 250 мл свежей среды, из расчета 1:50 и культивируют в условиях аэрации в течение 2-3 часов, до ОП=2-2,3 ОЕ, после чего вносят в ферментер.

Ферментацию культуры проводят после добавления в ферментер (рабочий объем 4 л) инокулята в соотношении 1:50 к объему среды при pH 7,2-7,5, температуре 37°С и аэрации (150 об/мин). Культуру выращивают до ОП600=1,8 (середина логарифмической фазы роста) и в среду вносят индуктор ИПТГ до конечной концентрации 0,5 мМ. Культивирование продолжают в течение 17 час, клетки собирают центрифугированием (5000 об/мин; 10 мин) и хранят при -80°С. Выход сырой биомассы составляет около 7 г/л. Содержание rec-ASP-ECAR в биомассе рекомбинантного штамма-продуцента составляет около 20% от суммарного белка клетки. Накопление фермента в клетках достигает 95-102 МЕ/мл культуральной среды.

Пример 5. Выращивание продуцента Escherichia coli BL(DE3)/pACYS_LANS(KM) в 300-литровом ферментере.

Для создания банка клеток используют отдельные клоны транформантов E.coli BL21(DE3)/pACYC_LANS(KM), полученные на LB-агаре с канамицином. Для закладки на хранение колонию продуцента выращивают в LB-бульоне до середины логарифмической фазы роста и полученную суспензию вносят в криовиалы, содержащие 30%-ный раствор глицерина, в соотношении 1:1. Смесь тщательно перемешивают и быстро замораживают при температуре -70°С.

Для отработки методики приготовления посевного материала для ферментации в 300-литровом ферментере используется схема, обеспечивающая оптимальные временные характеристики ведения процесса культивирования в сочетании с минимальным количеством пассажей продуцента на этапе масштабирования. В качестве исходного материала для ферментации используют ночную культуру продуцента, выращенную на среде с глюкозой и канамицином, которую после пересева в свежую питательную среду, выращивают до середины экспоненциальной фазы роста и вносят в 30-литровый инокулятор, после культивирования в котором продуцент поступает в 300-литровый ферментер.

Культивирование в ферментере объемом 300 л проведено при следующих условиях:

- Температура - 37°С

- Исходное значение pH среды - 7,0

- Условия аэрации: число оборотов мешалки 0-300 об/мин

Расход воздуха на аэрацию 150-70 л/мин

- Питательная среда на основе LB-M9 бульона

- Объем посевного материала 30 л (выращен в ферментере объемом 30 л)

- Оптическая плотность посевного материала при 560 нм - 4,70 ОЕ

- Объем культуральной жидкости в ферментере 260 л.

По окончании культивирования культуральную жидкость охлаждают до температуры 14-15°С проточной водопроводной водой, концентрируют в течение 3-х часов на мембранной установке (размер пор у мембран 0,25 мкм) до объема 30 л и сепарируют на сепараторе АСГ-3М при 9000 об/мин для получения влажной биомассы. Уровень активности аспарагиназы, определяемый методом прямой несслеризации, составил 140-150 МЕ/мл.

Пример 6. Очистка rec-ECAR_LANS из выращенной в ферментере биомассы.

Стадия 1. Разрушение биомассы на Френч-Прессе (получение бесклеточного экстракта).

Разрушение биомассы, проводят на Френч-Прессе в лизирующем буфере (10 мМ ЭДТА, pH 9,5), при соотношении клеток и лизирующего буфера 1:4 и рабочем давлении 1580-1600 бар. Выход на стадии бесклеточного экстракта составляет 80-93%.

Стадия II. Фракционирование сульфатом аммония и обессоливание.

Процесс солевого фракционирования проводят при температуре +4°С. При насыщении бесклеточного экстракта сульфатом аммония до 20% удается избавиться центрифугированием от части балластных белков, при дальнейшем насыщении сульфатом аммония надосадочной жидкости в интервале от 20 до 60% образуется осадок, который содержит почти всю аспарагиназную активность.

Для обессоливания используют колонку с Sephadex G-50 (coarse) объемом 5,5 л (14,0×35,5 см) в 20 мМ калий-фосфатном буфере, содержащем 1 мМ глицина и 1 мМ ЭДТА, pH 5,6. Обессоливание проводят при скоростях потока около 30 мл/мин.

Стадия III. Ионообменная хроматография на CM-Sepharose FF.

Обессоленную фракцию сульфат-аммонийного осадка разбавляют этим же буфером вдвое и наносят на колонку с CM-Sepharose FF (10×3,2 см), уравновешенную 20 мМ калий-фосфатным буфером, содержащим 1 мМ глицина и 1 мМ ЭДТА, pH 5,6 со скоростью около 400 мл/час. Проскок контролируют, определяя ферментативную активность качественно (микрометодом) с использованием реактива Несслера. После нанесения образца колонку промывают 20 мМ калий-фосфатным буфером, pH 6,3 с целью удаления балластных белков. Элюцию целевого вещества проводят 20 мМ калий-фосфатным буфером, pH 7,0 и 7,6. Завершающий этап хроматографической очистки полуфабриката аспарагиназы представляет собой стадию концентрирования образца, одновременно сопровождающуюся более глубокой степенью его очистки.

Стадия IV. Подготовка к лиофилизации.

Концентрирование проводят на колонке с CM-Sepharose FF (2,5×10,0 см), уравновешенной 20 мМ калий-фосфатным буфером, pH 6,3. В качестве предколонки используют колонку с DEAE-сорбентом СПС-DEAE-Био (5×6 см). Колонки с DEAE-сорбентом также уравновешивают 20 мМ калий-фосфатным буфером, pH 6,3.

Целевую фракцию, полученную с 250-миллилитровой колонки с СМ-Sepharose FF, разбавляют равным объемом 20 мМ KH2PO4, при этом pH фракции снижается с 7,0 до 6,3-6,4. Нанесение образца осуществляют через предколонку с DEAE-сорбентом на основную колонку с CM-Sepharose FF со скоростью потока 8 мл/мин. После нанесения образца колонку тщательно отмывают 20 мМ калий-фосфатным буфером, pH 6,3 до базовой линии, а затем элюируют белок 20 мМ калий-фосфатным буфером, pH 7,6.

Выход целевого вещества на этой стадии составляет 95-97%.

В качестве стабилизирующей добавки используют глюкозу, которую добавляют в препарат перед лиофилизацией до конечной концентрации 0,5%.

Стадия V. Лиофилизация.

Лиофилизацию проводят на лиофильной сушке Alpha ("Christ", Switzerland). В одних опытах концентраты, содержащие 0,5% глюкозы, лиофилизируют на полке при -10°С в течение 2 суток, затем полку нагревают до температуры 30°С. В других лиофилизацию проводят в колбах при комнатной температуре. Потери аспарагиназной активности при лиофилизации в обоих случаях составляют от 5 до 10%.

Выход целевого продукта при масштабировании процесса выделения и очистки составил 56%.

Полученный продукт полностью удовлетворяет требованиям, предъявляемым к иммунобиологическим рекомбинантным препаратам по содержанию примесных бактериальных белков E.coli и эндотоксинов.

Как видно из приведенных примеров, заявленная рекомбинантная плазмидная ДНК, штамм-продуцент Escherichia coli BL(DE3)/pACYC_LANS(KM), депонированный в ВКМП под коллекционным № В-103 70, обеспечивают возможность получения заявленным способом рекомбинантной L-аспарагиназы Erwinia carotovora с высоким выходом и достаточной чистотой.

Таблица 1. Уникальные сайты узнавания рестрикционными эндонуклеазами на ДНК плазмиды pACYC_LANS(KM) Фермент Сайт узнавания Позиция на карте BamHI GGATC!С 1155 Bsp68I TCG!CGA 3183 Bsp119I TT!CGAA 2026 Bst11071 GTA!TAC 2751 Bcu15I AT!CGAT 3218 Eco52I С!GGCCG 1187 Hin1I GR!CGYC 779 KpnI GGTAC!С 1146 Kpn2I T!CCGGA 1351 KspAI GTT!AAC 286 MluI A!CGCGT 689 NcoI С!CATGG 1142 NotI GC!GGCCGC 1186 PdmI GAANN!NNTTC 2706 Pfl23II С!GTACG 895 Psp1406I AA!CGTT 713 PvuI CGAT!CG 3525 PvuII CAG!CTG 1026 SacI GAGCT!С 1167 SspI AAT!ATT 3451 TatI W!GTACW 529 XceI RCATG!Y 2187

Таблица 2. Активность и продуктивность клонов E.coli/pACYC_LANS с делегированным геном резистентности к ампициллину №, п/п Клоны ОП600 нм Активность, (МЕ/мл) Продуктивность (МЕ/ОЕ) 1 pACYC_LANS(KM) 4,2 81,5 19,4 2 Контроль (среда с Ар) 4,5 66,3 14,7 3 Контроль (среда с Km) 4,3 61,6 14,5 4 pACYC_LANS (контроль, среда с Ар и Km) 4,6 65,3 14,3

Похожие патенты RU2441916C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СУБСТАНЦИИ РЕКОМБИНАНТНОЙ L-АСПАРАГИНАЗЫ ERWINIA CAROTOVORA 2010
  • Карасев Виктор Семенович
  • Бочкова Ольга Петровна
  • Чугунов Александр Михайлович
  • Мелик-Нубаров Николай Сергеевич
  • Гроздова Ирина Дмитриевна
  • Черновская Татьяна Вениаминовна
  • Денисов Лев Александрович
  • Руденко Елена Георгиевна
  • Морозова Елена Леонидовна
  • Богуш Владимир Григорьевич
  • Сидорук Константин Васильевич
  • Колтун Игорь Олегович
  • Скатова Галина Евгеньевна
  • Абакумова Ольга Юрьевна
  • Подобед Ольга Владимировна
  • Соколов Николай Николаевич
RU2441914C1
ГЕН L-АСПАРАГИНАЗЫ ERWINIA CAROTOVORA И ШТАММ ESCHERICHIA COLI ВКПМ № В-8174 - ПРОДУЦЕНТ L-АСПАРАГИНАЗЫ ERWINIA CAROTOVORA 2001
  • Эльдаров М.А.
  • Жгун А.А.
  • Гервазиев Ю.В.
  • Александрова С.С.
  • Омельянюк Н.М.
  • Арчаков А.А.
  • Скрябин К.Г.
  • Соколов Н.Н.
RU2221868C2
Модифицированный ген рас бактерий Escherichia coli, кодирующий предшественник фермента с активностью пенициллин G ацилазы, рекомбинантный штамм Escherichia coli - продуцент пенициллин G ацилазы и способ микробиологического синтеза этого фермента 2015
  • Эльдаров Михаил Анатольевич
  • Скляренко Анна Владимировна
  • Думина Мария Владимировна
  • Сатарова Дженни Эрнстовна
  • Жгун Александр Александрович
  • Медведева Наталья Викторовна
  • Яроцкий Сергей Викторович
RU2624022C1
РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pET15/N-Dest+ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ, ШТАММ Escherichia coli BL21(DE3)Gold, ТРАНСФОРМИРОВАННЫЙ РЕКОМБИНАНТНОЙ ДНК pET15/N-Dest+, И СПОСОБ ЕГО ПОЛУЧЕНИЯ, СПОСОБ ПОЛУЧЕНИЯ РЕКОМБИНАНТНОГО БИФУНКЦИОНАЛЬНОГО ФЕРМЕНТА - ДЕСТАБИЛАЗЫ МЕДИЦИНСКОЙ ПИЯВКИ 2015
  • Лазарев Василий Николаевич
  • Манувера Валентин Александрович
  • Курдюмов Алексей Сергеевич
  • Ахаев Дмитрий Николаевич
  • Баскова Изольда Парфирьевна
RU2658429C2
ШТАММ Escherichia coli BL21(DE3)Gold/pETmin-CypA - ПРОДУЦЕНТ РЕКОМБИНАНТНОГО ЦИКЛОФИЛИНА А ЧЕЛОВЕКА 2013
  • Хромых Людмила Менделевна
  • Лазарев Василий Николаевич
  • Манувера Валентин Александрович
  • Калинина Анастасия Андреевна
  • Силаева Юлия Юрьевна
  • Вагида Мурад Сусланович
  • Казанский Дмитрий Борисович
RU2557305C2
РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК PACYCLANS ДЛЯ ПЕРЕНОСА И ЭКСПРЕССИИ В КЛЕТКАХ ESCHERICHIA COLI ГЕНА L-АСПАРАГИНАЗЫ ERWINIA CAROTOVORA (ECAR-LANS) И СПОСОБ ПОЛУЧЕНИЯ РЕКОМБИНАНТНОЙ ECAR-LANS ИЗ БИОМАССЫ ШТАММА E.COLI-ПРОДУЦЕНТА 2002
  • Эльдаров М.А.
  • Жгун А.А.
  • Гервазиев Ю.В.
  • Александрова С.С.
  • Богуш В.Г.
  • Сидорук К.В.
  • Свешникова Е.В.
  • Борисова А.А.
  • Омельянюк Н.М.
  • Арчаков А.И.
  • Скрябин К.Г.
  • Соколов Н.Н.
RU2224797C2
РЕКОМБИНАНТНЫЕ ПЛАЗМИДНЫЕ ДНК, КОДИРУЮЩИЕ ГИБРИДНЫЕ ПОЛИПЕПТИДЫ СО СВОЙСТВАМИ КРАСНОГО ФЛУОРЕСЦЕНТНОГО БЕЛКА mCherry, ДЛЯ ПРОДУЦИРОВАНИЯ ГИБРИДНЫХ ФЛУОРЕСЦЕНТНЫХ БЕЛКОВ В Escherichia coli 2013
  • Петровская Лада Евгеньевна
  • Шингарова Людмила Николаевна
  • Гапизов Султан Шахбанович
  • Крюкова Елена Александровна
  • Болдырева Елена Филипповна
  • Якимов Сергей Александрович
  • Долгих Дмитрий Александрович
  • Кирпичников Михаил Петрович
RU2527171C1
РЕКОМБИНАНТНАЯ ПЛАЗМИДА pSVH0106, ОБЕСПЕЧИВАЮЩАЯ СИНТЕЗ Gl7ACA-АЦИЛАЗЫ В КЛЕТКАХ Escherichia coli, И РЕКОМБИНАНТНЫЙ ШТАММ Escherichia coli BL21(DE3)/pSVH0106-ПРОДУЦЕНТ Gl7ACA-АЦИЛАЗЫ 2005
  • Хатунцева Светлана Анатольевна
  • Эльдаров Михаил Анатольевич
  • Зейналов Орхан Ахмед Оглы
  • Скрябин Константин Георгиевич
RU2300566C2
РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК PTLS, СОДЕРЖАЩАЯ ГЕН ОДНОЦЕПОЧЕЧНОГО АНТИТЕЛА ПРОТИВ ВИРУСА КЛЕЩЕВОГО ЭНЦЕФАЛИТА, И ШТАММ БАКТЕРИЙ ESCHERICHIA COLI-ПРОДУЦЕНТ ОДНОЦЕПОЧЕЧНЫХ АНТИТЕЛ ПРОТИВ ВИРУСА КЛЕЩЕВОГО ЭНЦЕФАЛИТА 1998
  • Николенко Г.Н.
  • Тикунова Н.В.
  • Головин С.Я.
  • Протопопова Е.В.
  • Локтев В.Б.
  • Ильичев А.А.
  • Деев С.М.
RU2158309C2
РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pSS5, КОДИРУЮЩАЯ СИНТЕЗ РЕКОМБИНАНТНОГО ЧЕЛОВЕЧЕСКОГО АЛЬФА-2b ИНТЕРФЕРОНА, ШТАММ ESCHERICHIA COLI SS5 - ПРОДУЦЕНТ РЕКОМБИНАНТНОГО ЧЕЛОВЕЧЕСКОГО АЛЬФА-2b ИНТЕРФЕРОНА И СПОСОБ ПОЛУЧЕНИЯ ИНТЕРФЕРОНА АЛЬФА-2b 1999
  • Черепанов П.А.
  • Михайлова Т.Г.
  • Черепанов П.П.
  • Мартиненко Дмитрий Леонидович
  • Шевчук Александр Анатольевич
  • Федюкин В.С.
  • Николаев Т.М.
  • Толкачев Б.Б.
  • Свентицкий Е.Н.
  • Ураков Н.Н.
  • Калинин Ю.Т.
  • Денисов Л.А.
  • Тяготин Ю.В.
  • Мартюшин С.В.
  • Ищенко А.М.
  • Трофимов А.В.
  • Полякова Е.А.
  • Батарин В.И.
  • Шалаева О.Н.
  • Лисицкая В.И.
RU2165455C1

Иллюстрации к изобретению RU 2 441 916 C1

Реферат патента 2012 года РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pACYC-LANS(KM), ШТАММ Escherichia coli BL21(DE3), ТРАНСФОРМИРОВАННЫЙ РЕКОМБИНАНТНОЙ ДНК pACYC-LANS(KM), И СПОСОБ ПОЛУЧЕНИЯ РЕКОМБИНАНТНОЙ L-АСПАРАГИНАЗЫ Erwinia carotovora

Группа изобретений относится к биотехнологии и генной инженерии. Сконструирована рекомбинантная плазмидная ДНК pACYC_LANS(KM) для экспрессии в клетках Escherichia coli полипептида L-аспарагиназы Erwinia carotovora (rec-ASP-ECAR), предложен штамм-продуцент rec-ASP-ECAR, который получают путем трансформации компетентных клеток E.coli BL21(DE3) сконструированной рекомбинантной плазмидной ДНК pACYC_LANS(KM), разработан способ выращивания штамма с выделением и очисткой из полученной биомассы рекомбинантной L-аспарагиназы Erwinia carotovora. Изобретение позволяет обеспечить повышенный уровень биосинтеза полипептида rec-ASP-ECAR и достигнуть высокого выхода и чистоты целевого продукта при простом способе получения рекомбинантной аспарагиназы. 3 н. и 1 з.п. ф-лы, 4 ил., 2 табл.

Формула изобретения RU 2 441 916 C1

1. Рекомбинантная плазмидная ДНК pACYC_LANS(KM) для экспрессии в клетках Escherichia coli фермента L-аспарагиназы Erwinia carotovora (rec-ASP-ECAR), имеющая молекулярную массу 29,61 Md, размер 4563 п.н., содержащая: фрагмент BamHI - NsbI (FspI) вектора pACYC177, несущий участок начала репликации плазмиды р15А и ген kan, обеспечивающий устойчивость к канамицину; BglII-PdiI(NaeI) - фрагмент вектора рЕТ23а, несущий промотор и терминатор РНК-полимеразы фага Т7 и полилинкер, в котором по сайтам XbaI - BamHI клонирован NheI-BamHI фрагмент вектора pBAD24, несущий последовательность Шайн-Дальгарно с клонированным EcoRI-фрагментом хромосомы Erwinia carotovora размером 1135 п.н., содержащим ген L-аспарагиназы Erwinia carotovora; уникальные сайты узнавания рестрикционными эндонуклеазами, имеющими следующие координаты: Kpn I - 1146, BamHI - 1155, Nco - 1142, NotI - 1186, PvuI - 3525, Sac - 1167 п.н.

2. Штамм Escherichia coli BL21(DE3), трансформированный рекомбинантной плазмидной ДНК pACYC-LANS(KM), охарактеризованной по п.1 - продуцент рекомбинантной L-аспарагиназы Erwinia carotovora.

3. Способ получения рекомбинантной L-аспарагиназы Erwinia carotovora, характеризующийся тем, что культивируют в оптимальных условиях штамм-продуцент, охарактеризованный по п.2, выделяют сконцентрированную биомассу, подвергают ее разрушению на Френч-Прессе, высаливают целевой продукт из полученного бесклеточного экстракта сернокислым аммонием в зоне 20-60% насыщения, проводят обессоливание сульфат-аммонийной фракции на колонке с Sephadex G-50, обессоленную фракцию подвергают ионообменной хроматографии на СМ-Sepharose FF, осуществляют концентрирование целевого продукта в два этапа: вначале на колонке с DEAE-сорбентом, а затем на колонке с СМ-Sepharose FF и лиофилизуют.

4. Способ по п.3, отличающийся тем, что культивирование штамма осуществляют при 37°С в питательной среде на основе бульона LB-M9 при pH 7, культуральную жидкость после охлаждения подвергают мембранному концентрированию и сепарации.

Документы, цитированные в отчете о поиске Патент 2012 года RU2441916C1

РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК PACYCLANS ДЛЯ ПЕРЕНОСА И ЭКСПРЕССИИ В КЛЕТКАХ ESCHERICHIA COLI ГЕНА L-АСПАРАГИНАЗЫ ERWINIA CAROTOVORA (ECAR-LANS) И СПОСОБ ПОЛУЧЕНИЯ РЕКОМБИНАНТНОЙ ECAR-LANS ИЗ БИОМАССЫ ШТАММА E.COLI-ПРОДУЦЕНТА 2002
  • Эльдаров М.А.
  • Жгун А.А.
  • Гервазиев Ю.В.
  • Александрова С.С.
  • Богуш В.Г.
  • Сидорук К.В.
  • Свешникова Е.В.
  • Борисова А.А.
  • Омельянюк Н.М.
  • Арчаков А.И.
  • Скрябин К.Г.
  • Соколов Н.Н.
RU2224797C2
РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pL-ASP-08 И ШТАММ БАКТЕРИЙ Escherichia coli XL1-blue/pL-ASP-08 - ПРОДУЦЕНТ L-АСПАРАГИНАЗЫ 2009
  • Шибанова Елена Дмитриевна
  • Косарев Сергей Анатольевич
  • Узнадзе Ольга Леонидовна
RU2397248C1

RU 2 441 916 C1

Авторы

Сидорук Константин Васильевич

Богуш Владимир Григорьевич

Эльдаров Михаил Анатольевич

Гончарова Ольга Владимировна

Чугунова Надежда Михайловна

Покровская Марина Владимировна

Александрова Светлана Серебеджановна

Омельянюк Наталья Михайловна

Соколов Николай Николаевич

Даты

2012-02-10Публикация

2010-10-06Подача