ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ Российский патент 2012 года по МПК C22C21/12 C22C21/10 C22C21/06 

Описание патента на изобретение RU2447174C1

Изобретение относится к цветной металлургии, в частности, к литейным сплавам на основе алюминия, применяемым в авиационной технике и других отраслях машиностроения для нагруженных деталей внутреннего набора фюзеляжа, деталей управления, силовых кронштейнов и др. взамен штамповок, работающих длительно до 250°C.

Известен литейный сплав на основе алюминия, содержащий (мас.%):

Cu 3,5-5,5 Mg 0,2-0,5 Zr 0,1-0,4 Ti 0,1-0,4 Al остальное (Заявка Япония №58-5979)

Сплав обладает пониженными значениями механических и литейных свойств.

Известен высокопрочный литейный сплав на основе алюминия, содержащий (мас.%):

Cu 4,5-5,1 Mn 0,35-0,8 Ti 0,15-0,35 Cd 0,07-0,25 Al остальное (ГОСТ 1583-93)

Известен также высокопрочный литейный сплав на основе алюминия, содержащий (мас.%):

Cu 5,0-6,5 Mn 0,15-0,5 Ti 0,05-0,3 Cr 0,1-0,25 Cd 0,05-0,2 Al остальное (a.c. СССР №678889)

Известные сплавы имеют низкую технологичность при литье в песчаные формы.

Наиболее близким аналогом, взятым за прототип, является литейный сплав на основе алюминия, содержащий медь, магний, титан, цирконий при следующем соотношении компонентов, мас.%:

Cu 3,5-5,0 Mg 0,55-1,0 Ti 0,21-0,5 Zr 0,10-0,5 Al остальное (Патент РФ №2080407)

Недостатком сплава-прототипа являются недостаточно высокие литейные свойства, предел прочности и качество отливок.

Технической задачей предлагаемого изобретения является создание литейного сплава на основе алюминия, обладающего повышенными литейными свойствами (жидкотекучестью и горячеломкостью), пределом прочности, что позволит повысить качество сложных по конфигурации фасонных отливок.

Поставленная техническая задача достигается тем, что предложен литейный сплав на основе алюминия, содержащий медь, магний, титан, цирконий, отличающийся тем, что дополнительно содержит марганец, цинк, скандий при следующем соотношении компонентов (мас.%):

Cu 3,5-6,0 Mg 0,2-0,9 Ti 0,1-0,4 Zr 0,1-0,5 Mn 0,2-1,2 Zn 0,5-2,5 Sc 0,15-0,5 Al остальное

Установлено, что при заявленном соотношении и содержании компонентов при введении марганца, цинка, скандия повышаются литейные и прочностные свойства.

Примеры осуществления

Пример 1.

Приготовление опытного сплава в электропечи состава Al - 3,5% Cu - 0,2% Mg - 0,1% Ti - 0,1% Zr - 0,2% Mn - 0,5% Zn - 0,15% Sc.

В предварительно нагретую электропечь загрузили и расплавили чушковой алюминий. Затем вводили лигатуры Al-Cu, Al-Mn и Al-Ti, Al-Sc, Al-Zr, магний и цинк, расплав перемешивали, выстаивали, обрабатывали фторцирконатом калия. Состав опытного сплава и значения механических и технологических свойств приведены в таблицах 1, 2.

Примеры 2, 3 - аналогичны примеру 1, пример 4 - прототип. Составы сплавов приведены в таблице 1.

В таблице 2 приведены механические и технологические свойства образцов, вырезанных из отливок предлагаемого сплава и сплава-прототипа, системы Al-Cu-Mg.

Механические свойства определялись после термообработки по режиму Т5: закалка + искусственное старение, для сплава-прототипа по режиму Т4: закалка + естественное старение.

Из таблицы 2 следует, что для отливок (корпуса, крышки) из предлагаемого сплава технологические свойства значительно выше по сравнению с прототипом: жидкотекучесть повышается на 20-24%, горячеломкость снижается на 60%, линейная усадка снижается на 15%. Предел прочности возрастает на 5-7,5%.

Фасонные отливки прошли контроль качества. Брака по литью не обнаружено.

Таким образом, применение предлагаемого сплава системы Al-Cu-Mg в изделиях для фасонных отливок сложной конфигурации деталей внутреннего набора позволит получать качественные отливки с высокими технологическими свойствами при прочностных свойствах на уровне прототипа. Это снизит металлоемкость и повысит надежность в эксплуатации и ресурс изделий.

Похожие патенты RU2447174C1

название год авторы номер документа
Высокотеплопроводный алюминиевый литейный сплав 2024
  • Лыскович Анастасия Андреевна
  • Баженов Вячеслав Евгеньевич
  • Колтыгин Андрей Вадимович
  • Белов Владимир Дмитриевич
RU2822530C1
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2014
  • Каблов Евгений Николаевич
  • Антипов Владислав Валерьевич
  • Гончаренко Елена Семеновна
  • Трапезников Андрей Владимирович
  • Николаева Ирина Леонидовна
  • Огородов Дмитрий Валентинович
RU2563416C1
Высокопрочный литейный алюминиевый сплав 2020
  • Акопян Торгом Кароевич
  • Белов Николай Александрович
  • Летягин Николай Владимирович
RU2754418C1
ВЫСОКОПРОЧНЫЙ АЛЮМИНИЕВЫЙ СПЛАВ 2023
  • Манн Виктор Христьянович
  • Вахромов Роман Олегович
  • Крохин Александр Юрьевич
  • Рябов Дмитрий Константинович
  • Матвеев Сергей Владимирович
  • Фадеев Владимир Николаевич
  • Фокин Дмитрий Олегович
RU2805737C1
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2017
  • Манн Виктор Христьянович
  • Алабин Александр Николаевич
  • Крохин Александр Юрьевич
  • Фролов Антон Валерьевич
  • Ефимов Константин Васильевич
RU2673593C1
ВЫСОКОПРОЧНЫЙ АЛЮМИНИЕВЫЙ ЛИТЕЙНЫЙ СПЛАВ 2014
  • Каблов Евгений Николаевич
  • Антипов Владислав Валерьевич
  • Гончаренко Елена Семеновна
  • Трапезников Андрей Владимирович
  • Николаева Ирина Леонидовна
  • Огородов Дмитрий Валентинович
RU2558807C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2003
  • Фридляндер И.Н.
  • Каблов Е.Н.
  • Молостова И.И.
  • Елисеева С.П.
  • Блинова Н.Е.
RU2243278C1
ТЕРМОСТОЙКИЙ ЛИТЕЙНЫЙ АЛЮМИНИЕВЫЙ СПЛАВ 2010
  • Белов Николай Александрович
  • Белов Владимир Дмитриевич
  • Алабин Александр Николаевич
  • Мишуров Сергей Сергеевич
RU2478131C2
МАТЕРИАЛ НА ОСНОВЕ АЛЮМИНИЯ 2005
  • Белов Николай Александрович
  • Золоторевский Вадим Семенович
  • Чеверикин Владимир Викторович
RU2288965C1
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2015
  • Манн Виктор Христьянович
  • Алабин Александр Николаевич
  • Фролов Антон Валерьевич
  • Гусев Александр Олегович
  • Крохин Александр Юрьевич
  • Белов Николай Александрович
RU2610578C1

Реферат патента 2012 года ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ

Изобретение относится к цветной металлургии, в частности к литейным сплавам на основе алюминия, применяемым в авиационной технике и других отраслях машиностроения для нагруженных деталей внутреннего набора фюзеляжа, деталей управления, силовых кронштейнов и др. взамен штамповок, работающих длительно до 250°С. Литейный сплав на основе алюминия имеет следующий химический состав, мас.%: Сu 3,5-6,0, Mg 0,2-0,9, Ti 0,1-0,4, Zr 0,1-0,5, Mn 0,2-1,2, Zn 0,5-2,5, Sc 0,15-0,5, Al - остальное. Применение сплава позволит снизить металлоемкость, повысить надежность изделий в эксплуатации за счет повышения литейных свойств сплава и его прочности. 2 табл.

Формула изобретения RU 2 447 174 C1

Литейный сплав на основе алюминия, содержащий медь, магний, титан, цирконий, отличающийся тем, что он дополнительно содержит марганец, цинк, скандий при следующем соотношении компонентов, мас.%:
Сu 3,5-6,0 Mg 0,2-0,9 Ti 0,1-0,4 Zr 0,1-0,5 Mn 0,2-1,2 Zn 0,5-2,5 Sc 0,15-0,5 Al остальное

Документы, цитированные в отчете о поиске Патент 2012 года RU2447174C1

АЛЮМИНИЕВЫЙ ЛИТЕЙНЫЙ СПЛАВ И СПОСОБ ЕГО ТЕРМООБРАБОТКИ 1993
  • Чебышев Виталий Андреевич
RU2080407C1
СПЛАВ СИСТЕМЫ АЛЮМИНИЙ-МАРГАНЕЦ И ИЗДЕЛИЕ ИЗ ЭТОГО СПЛАВА 2002
RU2218437C1
US 2006027291 A1, 09.02.2006
Способ нагрева воздуха в многоходовом воздухоподогревателе 1984
  • Липец Адольф Ушерович
  • Ямпольский Аркадий Ефимович
  • Сотников Иван Алексеевич
  • Писаревский Борис Владимирович
  • Закривидорога Владимир Николаевич
  • Курляндчик Арон Гершевич
  • Репрев Николай Васильевич
  • Курляндчик Майя Аврумовна
  • Миллер Валерий Исаевич
SU1245805A1
ЗАМОК ДЛЯ СОЕДИНЕНИЯ ШПУНТОВЫХ ЭЛЕМЕНТОВ 2010
  • Кочетов Андрей Викторович
  • Каган Залман Гиршевич
  • Комарчев Александр Викторович
RU2454509C2
FR 2855834 A1, 10.12.2004.

RU 2 447 174 C1

Авторы

Антипов Владислав Валерьевич

Корнышева Инна Семеновна

Гончаренко Елена Семеновна

Николаева Ирина Леонидовна

Семенов Сергей Сергеевич

Коновалова Ольга Николаевна

Козленкова Анастасия Игоревна

Даты

2012-04-10Публикация

2011-04-05Подача