СПОСОБ ПОЛУЧЕНИЯ ОКСИДА АЛЮМИНИЯ, ПРИГОДНОГО ДЛЯ ПРОИЗВОДСТВА ИСКУССТВЕННЫХ КРИСТАЛЛОВ КОРУНДА Российский патент 2012 года по МПК C01F7/42 C25B1/00 

Описание патента на изобретение RU2466937C2

Изобретение относится к области химии, в частности к технологии получения оксида алюминия, который может быть использован в производстве искусственных кристаллов корунда.

Известен способ получения оксида алюминия, включающий обработку металлического алюминия водой с добавками хлоридов щелочных металлов и нагрев [а.с. SU 1350995 А1, кл. C01F 7/42, опубл. 27.06.1999 г.]. В герметичную емкость помещают смесь хлоридов щелочных металлов, металлический алюминий и воду, емкость с содержимым помещают в печь и нагревают до 400-600°С. После завершения реакции емкость охлаждают, содержимое растворяют в воде, осадок отфильтровывают и сушат. Способ предполагает большой расход солей, которые после переплава и растворения в воде непригодны для повторного использования, а получаемый по данному способу оксид алюминия не удовлетворяет требованиям по высокой чистоте, необходимой для производства искусственных кристаллов корунда.

Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому изобретению является способ получения оксида алюминия, включающий анодное растворение алюминия в водном растворе хлорида натрия, отделение гидроксида алюминия и прокаливание [пат. RU 2366608 С1, кл. C01F 7/42, опубл. 10.09.2009]. Анодное растворение алюминия осуществляют в водном растворе хлорида натрия концентрацией 30-300 г/л с помощью выпрямленного по двухполупериодной схеме переменного тока при плотности тока 0,015-0,045 А/см2. Обработка осадка гидроксида алюминия включает отмывку, фильтрование, сушку, прессование и прокаливание при температуре 600-1350°С. Выход продукта по данному способу составляет 155-450 г/(м2·ч).

Целью предлагаемого изобретения является увеличение выхода продукта и производительности электролизера, улучшение качества получаемого продукта и повышение технологичности процесса в целом.

Достигается это тем, что для увеличения выхода продукта и производительности электролизера анодное растворение алюминия осуществляют в хлоридном растворе, содержащем 5-150 г/л хлорид-ионов, при температуре 20-95°С и плотности тока 0,045-0,12 А/см2, для улучшения качества получаемого продукта используют алюминий чистотой 99,95-99,999%, проводят отмывку гидроксида алюминия специально подготовленной водой с удельным сопротивлением 0,4-18 МОм·см.

Для приготовления хлоридного раствора используют хлориды аммония, натрия или их смеси, которые обладают высокой растворимостью, обеспечивающей высокую электропроводность электролита, а отсутствие поливалентных элементов в электролите позволяет достичь высоких показателей производительности.

Использование реверсивной подачи постоянного тока при анодном растворении алюминия позволяет создать более равномерные условия растворения алюминия при длительном ведении электролиза, при этом уменьшается количество электродных остатков.

Для интенсивного удаления из межэлектродного пространства образующегося гидроксида алюминия проводят циркуляцию электролита во внешнем относительно электролизера контуре со скоростью омывания поверхности электродов 60-1400 (л/м2·ч), что предотвращает образование пленок гидрида алюминия, ухудшающих качество продукта.

Для повышения скорости образования плотного осадка гидроксида алюминия и первичного отделения от него электролита используют сборную расширительную емкость с коэффициентом расширения 25-400. Под коэффициентом расширения понимают отношение рабочей площади сборной емкости к ее входному сечению.

Для отделения гидроксида алюминия от электролита используют центрифугирование осадка со скоростью вращения 20-60 об/с, что обеспечивает высокую степень разделения осадка и фильтрата, содержащего остатки солей.

Осуществление сушки гидроксида алюминия в потоке горячего воздуха, имеющего температуру 100-400°С, предотвращает комкование продукта, которое нежелательно при производстве искусственных кристаллов корунда.

Интервал содержания хлорид-ионов в растворе 5-150 г/л обусловлен тем, что при содержании хлорид-ионов менее 5 г/л увеличивается сопротивление электролита, и повышается расход электроэнергии, а при содержании хлорид-ионов более 150 г/л затрудняется диссоциация хлоридов.

Температурный интервал для раствора 20-95°С обусловлен тем, что при температуре ниже 20°С снижается скорость диффузии, на электродах появляются отложения, препятствующие протеканию процесса, а при температуре выше 95°С электролит закипает, и электролиз провести не удается.

Интервал плотностей тока 0,045-0,12 А/см2 обусловлен тем, что при плотности тока менее 0,045 А/см2 скорость процесса низкая, а увеличение плотности тока выше 0,12 А/см2 приводит к точечному разрушению поверхности электродов.

Интервал чистоты используемого алюминия 99,95-99,999% обусловлен тем, что при содержании алюминия менее 99,95% получается продукт низкого качества, которое не позволяет его использовать для производства искусственных кристаллов корунда, а при использовании алюминия чистотой более 99,999% дальнейшего повышения качества продукта не происходит.

Интервал удельного сопротивления воды, используемой для отмывки гидроксида алюминия, 0,4-18 МОм·см обусловлен тем, что при удельном сопротивлении менее 0,4 МОм·см происходит загрязнение продукта, а при использовании воды с удельным сопротивлением более 18 МОм·см качество продукта не улучшается.

Интервал скорости омывания поверхности электродов 60-1400 л/(м2·ч) обусловлен тем, что при скорости омывания менее 60 л/(м2·ч) осадок гидроксида алюминия не смывается с поверхности электродов, а при скорости омывания более 1400 л/(м2·ч) поверхность электродов остается чистой, и дальнейшее увеличение потока эффекта не дает.

Интервал коэффициента расширения 25-400 обусловлен тем, что при коэффициенте расширения менее 25 происходит затруднение осаждения мелких частиц и увеличение выноса гидроксида алюминия из емкости, а при коэффициенте расширения более 400 интенсивность осаждения не увеличивается.

Интервал скорости вращения при центрифугировании осадка 20-60 об/с обусловлен тем, что при скорости вращения менее 20 об/с в осадке остается много солей, что приводит к снижению качества продукта, а при скорости вращения более 60 об/с дальнейшего снижения содержания солей в продукте не происходит.

Интервал температуры горячего воздуха, используемого для сушки гидроксида алюминия, 100-400°С обусловлен тем, что при температуре ниже 100°С гидроксид алюминия не сушится, а при температуре выше 400°С влажность гидроксида алюминия не меняется.

Эксперименты проводятся следующим образом. В электролизер заливают электролит - водный раствор хлоридов заданной концентрации и состава. Туда же помещают алюминиевые электроды определенной чистоты. Температуру раствора доводят до заданного значения и поддерживают постоянной. Электроды подключают к источнику постоянного тока. Устанавливают режим подачи тока. Включают ток и поддерживают в соответствии с заданной плотностью тока. В процессе электролиза происходит образование гидроксида алюминия. Омывшие поверхности электродов осуществляют электролитом, циркулирующим во внешнем контуре при работе насоса. Гидроксид алюминия поступает в сборную емкость с изменяемым коэффициентом расширения. В ней образуется уплотненный осадок гидроксида алюминия, который затем извлекают и загружают в центрифугу. Центрифугирование проводят с заданной скоростью вращения до полного извлечения фильтрата. Осадок отмывают специально подготовленной водой с известным удельным сопротивлением. Отмытый осадок сушат в потоке горячего воздуха, нагреваемого тепловентилятором до заданной температуры, и прокаливают в электрической печи до получения оксида алюминия. В полученном продукте определяют содержание примесей и устанавливают соответствие его требованиям для производства искусственных кристаллов корунда.

Условия проведения экспериментов и полученные результаты приведены в таблице 1.

Предлагаемый способ позволяет увеличить выход продукта и производительность электролизера, улучшить качество получаемого оксида алюминия и повысить технологичность процесса в целом.

Похожие патенты RU2466937C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА АЛЮМИНИЯ, ПРИГОДНОГО ДЛЯ ПРОИЗВОДСТВА МОНОКРИСТАЛЛОВ КОРУНДА 2008
  • Лысенко Андрей Павлович
  • Бекишев Владимир Афанасьевич
  • Серёдкин Юрий Георгиевич
  • Зенькович Георгий Степанович
RU2366608C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОЧИСТОГО ОКСИДА АЛЮМИНИЯ ЭЛЕКТРОЛИЗОМ 2013
  • Лысенко Андрей Павлович
  • Мурыгин Андрей Геннадьевич
  • Наливайко Антон Юрьевич
RU2538606C1
СПОСОБ ПОЛУЧЕНИЯ ОКСИДНОЙ ШИХТЫ, ПРИГОДНОЙ ДЛЯ ПРОИЗВОДСТВА ЦВЕТНЫХ КРИСТАЛЛОВ КОРУНДА 2013
  • Лысенко Андрей Павлович
  • Мурыгин Андрей Геннадьевич
  • Тарасов Вадим Петрович
  • Наливайко Антон Юрьевич
RU2539874C1
Способ получения альфа-оксида алюминия высокой чистоты 2016
  • Лысенко Андрей Павлович
  • Наливайко Антон Юрьевич
RU2630212C1
СПОСОБ ПЕРЕРАБОТКИ СОЛЕВЫХ АЛЮМОСОДЕРЖАЩИХ ШЛАКОВ С ПОЛУЧЕНИЕМ ПОКРОВНЫХ ФЛЮСОВ И АЛЮМИНИЕВЫХ СПЛАВОВ-РАСКИСЛИТЕЛЕЙ 2011
  • Лысенко Андрей Павлович
  • Серёдкин Юрий Георгиевич
RU2449032C1
Способ электрохимического получения порошков оксида алюминия 2017
  • Балабанов Станислав Сергеевич
  • Дроботенко Виктор Васильевич
  • Ростокина Елена Евгеньевна
RU2664135C1
Способ получения сплава титан-железо и устройство для его осуществления 2019
  • Лысенко Андрей Павлович
  • Кондратьева Дарья Сергеевна
  • Кондратьев Сергей Владимирович
  • Наливайко Антон Юрьевич
RU2734610C1
СПОСОБ ПЕРЕРАБОТКИ СВИНЕЦ- И СУЛЬФИДСОДЕРЖАЩИХ ШЛИХОВ ЗОЛОТА (ВАРИАНТЫ) 2000
  • Фаррахутдинов Фирдавис Ягудинович
  • Сухов Виталий Константинович
  • Козин Леонид Фомич
  • Коростин Анатолий Дмитриевич
  • Тихомиров Алексей Николаевич
RU2196839C2
Способ получения модифицированной высокодисперсной алюмооксидной системы для технической керамики 2021
  • Дресвянников Александр Федорович
  • Петрова Екатерина Владимировна
  • Хайруллина Алина Исмагиловна
  • Кашфразыева Ляйсан Илдусовна
RU2762226C1
СПОСОБ ПОЛУЧЕНИЯ ГАЛЛИЯ ИЗ ЩЕЛОЧНО-АЛЮМИНАТНЫХ РАСТВОРОВ ГЛИНОЗЕМНОГО ПРОИЗВОДСТВА И ЭЛЕКТРОЛИЗЕР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Рубинштейн Г.М.
  • Яценко С.П.
  • Диев В.Н.
RU2127328C1

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ ОКСИДА АЛЮМИНИЯ, ПРИГОДНОГО ДЛЯ ПРОИЗВОДСТВА ИСКУССТВЕННЫХ КРИСТАЛЛОВ КОРУНДА

Изобретение относится к области химии. Для получения оксида алюминия, пригодного для производства искусственных кристаллов корунда, алюминий чистотой 99,95-99,999% растворяют в растворе хлоридов аммония, натрия или их смеси, содержащем 5-150 г/л хлорид-ионов, при температуре 20-95°С при реверсивной подаче постоянного тока при плотности тока 0,045-0,12 А/см2. Поверхность электродов омывают со скоростью 60-1400 л/(м2·ч) электролитом, циркулирующим во внешнем контуре. Образование плотного осадка гидроксида алюминия осуществляют в сборной расширительной емкости с коэффициентом расширения 25-400. Гидроксид алюминия отделяют от электролита центрифугированием со скоростью вращения 20-60 об/с. Осадок отмывают специально подготовленной водой с удельным сопротивлением 0,4-18 МОм·см. Отмытый осадок сушат в потоке горячего воздуха температурой 100-400°С и прокаливают в электрической печи до получения оксида алюминия. Изобретение позволяет увеличить выход продукта и производительность электролизера, улучшить качество получаемого оксида алюминия. 5 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 466 937 C2

1. Способ получения оксида алюминия, пригодного для производства искусственных кристаллов корунда, включающий анодное растворение алюминия в водном солевом растворе, отделение гидроксида алюминия и прокаливание, отличающийся тем, что анодное растворение алюминия чистотой 99,95-99,999% осуществляют в хлоридном растворе, содержащем 5-150 г/л хлорид-ионов, при температуре 20-95°С, используют реверсивную подачу постоянного тока при плотности тока 0,045-0,12 А/см2, проводят отмывку гидроксида алюминия специально подготовленной водой с удельным сопротивлением 0,4-18 МОм·см.

2. Способ по п.1, отличающийся тем, что для приготовления хлоридного раствора используют хлориды аммония, натрия или их смеси.

3. Способ по п.1, отличающийся тем, что проводят циркуляцию электролита во внешнем относительно электролизера контуре со скоростью омывания поверхности электродов 60-1400 л/(м2·ч).

4. Способ по п.1, отличающийся тем, что для образования плотного осадка гидроксида алюминия и первичного отделения от него электролита используют сборную расширительную емкость с коэффициентом расширения 25-400.

5. Способ по п.1, отличающийся тем, что для отделения гидроксида алюминия от электролита используют центрифугирование осадка со скоростью вращения 20-60 об/с.

6. Способ по п.1, отличающийся тем, что перед прокаливанием проводят сушку гидроксида алюминия в потоке горячего воздуха, имеющего температуру 100-400°С.

Документы, цитированные в отчете о поиске Патент 2012 года RU2466937C2

СПОСОБ ПОЛУЧЕНИЯ ОКСИДА АЛЮМИНИЯ, ПРИГОДНОГО ДЛЯ ПРОИЗВОДСТВА МОНОКРИСТАЛЛОВ КОРУНДА 2008
  • Лысенко Андрей Павлович
  • Бекишев Владимир Афанасьевич
  • Серёдкин Юрий Георгиевич
  • Зенькович Георгий Степанович
RU2366608C1
Элетрохимический способ получения окиси алюминия 1976
  • Коток Людмила Анатольевич
  • Байдашникова Зоя Ефимовна
  • Мешкова Ольга Васильевна
  • Остис Елена Константиновна
  • Экель Виктор Аркадьевич
SU621644A1
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ОКСИДА АЛЮМИНИЯ 1998
  • Косинцев В.И.
  • Коробочкин В.В.
  • Ковалевский Е.П.
  • Быстрицкий Л.Д.
RU2135411C1
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА ОКСИДА МЕТАЛЛА 2005
  • Сокольников Михаил Леонидович
  • Балакирев Владимир Федорович
RU2299176C1
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА АЛЮМИНИЯ 1994
  • Ламберов А.А.
  • Лиакумович А.Г.
  • Агаджанян С.И.
  • Вязков В.А.
  • Левин О.В.
RU2083722C1
Контактное устройство 1988
  • Ястребов Василий Николаевич
  • Шишанкин Виктор Александрович
SU1557690A1
Способ холодной переработки китового покровного сала 1956
  • Заикин В.В.
SU108968A1

RU 2 466 937 C2

Авторы

Лысенко Андрей Павлович

Бекишев Владимир Афанасьевич

Серёдкин Юрий Георгиевич

Даты

2012-11-20Публикация

2010-12-21Подача