ИЗМЕРИТЕЛЬ УГЛОВОГО ПОЛОЖЕНИЯ ИЗДЕЛИЯ Российский патент 2013 года по МПК G01C21/10 

Описание патента на изобретение RU2491507C1

Изобретение относится к области измерительной техники и промышленной электроники и служит для измерения углового положения изделия.

Известен измеритель углового положения изделия, на которое он установлен, построенный на принципе измерения проекции вектора ускорения силы тяжести на измерительную ось.

Измеритель представляет собой по конструкции компенсационный маятниковый акселерометр с обратной связью, использующий в своей основе акселерометр А-17 (РПКБ г.Раменское), адаптированный к требованиям измерения угла тангажа и крена моделей летательных аппаратов при их испытаниях в аэродинамических трубах (см. В.В. Буров, B.C. Волобуев, С.А. Глазков, А.Р. Горбушин, Е.К. Чумаченко. Измерительно-вычислительный комплекс трансзвуковой аэродинамической трубы Т-128 ЦАГИ // Датчики и системы. - 2010. №5. - С.19-24). Чувствительным элементом измерителя является маятник, на котором размещена катушка магнитоэлектрического датчика, создающего компенсационный момент. Ток, протекающий через катушку датчика момента в установившемся режиме, пропорционален величине ускорения, действующего вдоль измерительной оси, т.е. в данном использовании углу отклонения от вертикали.

К недостаткам измерителя следует отнести:

- сложность конструкции датчика;

- недостаточная эксплуатационная надежность датчика (не допускаются удары при установке измерителя, удары по изделию после его установки, неодновременное включение либо выключение напряжений питания +15 B и минус 15 B);

- измерение угла наклона относительно только одной оси чувствительности;

- использование внешнего масштабного резистора, включенного последовательно с катушкой датчика момента (величиной 3000 Ом);

- габариты (24×24×23,7 мм) и вес (0,060 кг), ограничивающие установку группы измерителей на испытываемое изделие (например, несколько десятков для определения деформированного состояния упруго-подобных моделей);

- в ряде случаев недостаточная точность измерения угла отклонения изделия (погрешность Δα=±0,01°).

Наиболее близким аналогом предлагаемого изобретения, принятого за прототип, является микромеханический двухосевой инклинометр, предназначенный для измерения углов α и β отклонений базовой поверхности относительно плоскости горизонта в двух взаимно перпендикулярных направлениях (С.А. Анчутин, Е.С. Морозова, А.С. Головань, В.Н. Максимов, В.Ф. Шилов. Инклинометр микромеханический двухосевой ИМД-9 // Датчики и системы. - 2011. №2. - С.48-50).

Инклинометр содержит три микромеханических одноосевых акселерометра, каждый из которых выдает выходной сигнал в виде цифрового кода, соответствующего величине воздействующего ускорения вдоль оси его чувствительности. Аналоговые данные, поступающие с чувствительных элементов микромеханических акселерометров, обрабатываются аналого-цифровыми преобразователями в соответствующих блоках. При этом работа разных микромеханических акселерометров осуществляется независимо друг от друга. Два из трех акселерометров устанавливаются в инклинометре таким образом, чтобы их оси чувствительности были направлены горизонтально и перпендикулярно друг другу. При этом выходные сигналы акселерометров (при отсутствии ускорений, отличных от ускорения силы тяжести) имеют вид:

Ux=U0x+Kx·g·sinα;

Uy=U0y+Ky·g·sinβ,

где U0x, U0y - нулевые сигналы акселерометров; Kx, Ky - масштабные коэффициенты; g - ускорение; α и β - углы отклонения базовой поверхности.

Для повышения точности измерения углов при приближении к значению ±90° используется третий акселерометр, установленный по оси Z.

Микромеханические акселерометры подключаются к плате модуля съема и обработки данных. В состав модуля входит вычислитель-преобразователь, реализованный на базе 16-разрядного микроконтроллера. Микроконтроллер обрабатывает данные трех микромеханических акселерометров и вычисляет значения углов отклонения от плоскости горизонта. Погрешность измерения углов (±0,10°) зависит от точности установки акселерометров на основании (не хуже 1°), калибровки датчика и алгоритма вычисления углов. Габаритные размеры инклинометра 45×35×20 мм.

К недостаткам прототипа следует отнести: невысокую точность измерения углов (±0,10°), особенно при измерении малых углов отклонения, использование трех одноосевых акселерометров для построения двухосевого инклинометра, сложность схемы и конструкции, значительные габариты (45×35×20 мм).

Техническим результатом является повышение чувствительности и точности измерений малых углов отклонения, уменьшение температурной погрешности измерителя, обеспечение помехоустойчивости, упрощение конструкции и уменьшение габаритов.

Технический результат достигается тем, что в измеритель углового положения изделия, содержащий микромеханические акселерометры, аналого-цифровые преобразователи и микроконтроллер, введены четыре буферных операционных усилителя, два дифференциальных усилителя, и в качестве акселерометров использованы два двухосевых микромеханических акселерометра, установленных таким образом, что их одноименные оси чувствительности направлены горизонтально и перпендикулярно, а разноименные в противоположные стороны, при этом разноименные выходы акселерометров через буферные операционные усилители подключены к дифференциальным входам усилителей разности напряжений, выходы которых подключены к соответствующим входам аналого-цифровых преобразователей микроконтроллера.

Благодаря указанным отличительным признакам, в совокупности с известными (указанными в ограничительной части формулы) достигается следующий технический результат:

- повышается чувствительность и точность измерения углов, за счет использования двух двухосевых микромеханических акселерометров с определенной ориентацией осей чувствительности в горизонтальной плоскости и суммированием их сигналов в дифференциальных усилителях;

- уменьшение температурной погрешности измерителя углов, за счет компенсации начальных сигналов акселерометров в дифференциальных усилителях, существенно зависящих от изменения температуры внешней среды (уход нуля двухосевых микромеханических акселерометров, например ADXL203, может составлять 0,1 mg/°C);

- повышается помехоустойчивость и точность измерений углов, за счет согласования высокоомных выходных импедансов акселерометров (~20 кОм) с входами дифференциальных усилителей разности напряжений с помощью буферных операционных усилителей с низкоомным выходным импедансом;

- упрощается конструкция и уменьшаются габариты измерителя. На фиг.1 показана структурная схема предлагаемого измерителя угловых положений изделия.

Предлагаемый измеритель угловых положений изделия содержит два двухосевых микромеханических акселерометра 1 и 2 (ADXL203), установленных на противоположных сторонах основания таким образом, что их одноименные оси чувствительности X1, Х2 и Y1, Y2 направлены горизонтально и перпендикулярно, а разноименные оси X1, Y2 и Х2, Y1 направлены в противоположные стороны, при этом вертикальные оси Z1 и Z2 совпадают. Измеритель угловых положений изделия содержит также буферные опера-усилители 3, 4, 5, 6, к входам которых подключены высокоомные (~20 кОм) выходы x1, х2, y1, y2 акселерометров, низкоомные выходы x 1 * и y 2 * буферных операционных усилителей 3 и 6 подключены к входам дифференциального усилителя разности напряжений 7, а низкоомные выходы x 2 * , y 1 * буферных операционных усилителей 4 и 5 подключены к входам дифференциального усилителя 8. Таким образом, разноименные выходы x1, х2, y1, y2 акселерометров через буферные операционные усилители подключены к дифференциальным входам усилителей разности напряжений 7 и 8.

Выходы дифференциальных усилителей 7 и 8 подключены к соответствующим аналого-цифровым преобразователям 9 и 10 микроконтроллера 11.

Предлагаемый измеритель угловых положений изделия работает следующим образом: при отсутствии ускорений, отличных от ускорения силы тяжести, выходные сигналы акселерометров имеют вид:

- для акселерометра 1:

Ux1=U0x1+Kx1·g·sinα;

Uy1=U0y1+Ky1·g·sinβ;

- для акселерометра 2:

Ux2=U0x2+Kx2·g·sinβ;

Uy2=U0y2+Ky2·g·sinα,

где U0x1, U0x2, U0y1, U0y2 - нулевые сигналы акселерометров; Kx1, Kx2, Ky1, Ky2 - масштабные коэффициенты.

Вследствие особенностей конструктивной установки акселерометров в измерителе, при отклонении их осей чувствительности от горизонтальной плоскости, выходные сигналы акселерометров и соответствующие им сигналы буферных операционных усилителей примут вид:

U x 1 * = U 0 x 1 + Δ U x 1 + K x 1 g s i n α ;

U y 1 * = U y x 1 + Δ U y 1 + K y 1 g s i n β ;

U x 2 * = U 0 x 2 Δ U x 2 + K x 2 g s i n β ;

U y 2 * = U o y 2 Δ U y 2 + K y 2 g s i n α .

В результате преобразования и суммирования сигналов U x 1 * , U y 2 * в дифференциальном усилителе разности напряжений 7 и сигналов U x 2 * , U y 1 * в дифференциальном усилителе разности напряжений 8 компенсируются начальные сигналы акселерометров U0x1, U0y2 в дифференциальном усилителе 7 и начальные сигналы акселерометров U0x2, U0y1 в дифференциальном усилителе 8, существенно зависящие от изменения температуры окружающей среды, и удваиваются полезные сигналы акселерометров: |ΔUx1|+|ΔUy2| и |ΔUx2|+|ΔUy1|.

При условии U0x1=U0y2; U0x2=U0y1; |ΔUx1|=|ΔUy2|=ΔUα; |ΔUx2|=|ΔUy1|=ΔUβ; Kx1=Ky2=Kα; Kx2=Ky1=Kβ, на выходах дифференциальных усилителей разности напряжений 7 и 8 сформируются соответственно сигналы:

2 Δ U α = K α g sin α ; ( 1 ) 2 Δ U β = K β g sin β .

Выходные напряжения (1) дифференциальных усилителей 7 и 8 преобразуются в кодовый эквивалент аналого-цифровыми преобразователями 9 и 10.

Определение значений углов положения изделия выполняется путем вычисления арксинусов углов α и β в микроконтроллере 11.

Изготовлены и исследованы опытные образцы измерителя, которые подтвердили указанные технические результаты. В диапазоне углов ±20° (угловых градусов) погрешность измерения по результатам градуировок в нормальных условиях составила ≤±25″ (угловых секунд) или ±0,07° (угловых градусов). Габариты измерителя 20 мм ×30 мм×6 мм.

Похожие патенты RU2491507C1

название год авторы номер документа
Сейсмокардиоблок и способ измерения сейсмокардиоцикла 2017
  • Солдатенков Виктор Акиндинович
  • Грузевич Юрий Кириллович
  • Ачильдиев Владимир Михайлович
  • Бедро Николай Анатольевич
  • Евсеева Юлия Николаевна
  • Басараб Михаил Алексеевич
  • Коннова Наталья Сергеевна
RU2679296C1
БЕСКАРДАННЫЙ ГИРОСКОПИЧЕСКИЙ ИНКЛИНОМЕТР И СПОСОБ ВЫРАБОТКИ ИНКЛИНОМЕТРИЧЕСКИХ УГЛОВ 1994
  • Андрианов Ю.М.
  • Богомолов О.Д.
  • Вечтомов В.М.
  • Герасимов Н.В.
  • Люсин Ю.Б.
  • Пензин Л.И.
  • Пуляевский Г.Г.
  • Сабаев В.Ф.
  • Саенко В.А.
  • Чичинадзе М.В.
  • Шульман И.Ш.
RU2101487C1
СПОСОБ ИЗМЕРЕНИЯ ТРАЕКТОРИИ СКВАЖИНЫ ПО АЗИМУТУ И ДВУХРЕЖИМНЫЙ БЕСПЛАТФОРМЕННЫЙ ГИРОСКОПИЧЕСКИЙ ИНКЛИНОМЕТР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Никишин Сергей Алексеевич
  • Каштанов Виктор Данилович
  • Сабитов Александр Фаридович
RU2269001C1
СПОСОБ И СИСТЕМА ИЗМЕРЕНИЯ УКЛОНОВ ДЛЯ ПОЗИЦИОНИРОВАНИЯ ОБЪЕКТОВ 2008
  • Солдатенков Виктор Акиндинович
  • Грузевич Юрий Кириллович
  • Ачильдиев Владимир Михайлович
  • Беликова Вера Николаевна
  • Лисов Михаил Анатольевич
  • Рязанов Сергей Серафимович
RU2382986C2
ГИРОИНЕРЦИАЛЬНЫЙ МОДУЛЬ ГИРОСКОПИЧЕСКОГО ИНКЛИНОМЕТРА 2012
  • Кривошеев Сергей Валентинович
  • Стрелков Александр Юрьевич
RU2499224C1
ГИРОИНЕРЦИАЛЬНЫЙ МОДУЛЬ ГИРОСКОПИЧЕСКОГО ИНКЛИНОМЕТРА 2012
  • Кривошеев Сергей Валентинович
  • Стрелков Александр Юрьевич
RU2528105C2
ИНЕРЦИАЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРИБОР 2005
  • Чеботаревский Юрий Викторович
  • Коркишко Юрий Николаевич
  • Федоров Вячеслав Александрович
  • Прилуцкий Виктор Евставьевич
  • Плотников Петр Колестратович
  • Шкаев Александр Григорьевич
RU2295113C2
Низкочастотный стенд для калибровки и испытаний акселерометров и сейсмоприемников 2019
  • Захарченко Михаил Юрьевич
  • Кузнецов Артем Олегович
  • Батищев Виктор Павлович
  • Яковишин Александр Сергеевич
RU2757971C2
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ УГЛА НАКЛОНА КАНАТА ГРУЗОПОДЪЕМНОЙ МАШИНЫ (ВАРИАНТЫ) 2007
  • Коровин Владимир Андреевич
  • Коровин Константин Владимирович
RU2346879C2
ГИРОСКОПИЧЕСКИЙ ИНКЛИНОМЕТР И СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВОЙ ОРИЕНТАЦИИ СКВАЖИН 2005
  • Белов Евгений Федорович
  • Белов Максим Евгеньевич
  • Носиков Максим Владимирович
  • Саган Илья Анатольевич
RU2282717C1

Реферат патента 2013 года ИЗМЕРИТЕЛЬ УГЛОВОГО ПОЛОЖЕНИЯ ИЗДЕЛИЯ

Изобретение относится к измерительной технике и предназначено для измерения углового положения изделия. Измеритель содержит два двухосевых микромеханических акселерометра, установленных таким образом, что их одноименные оси чувствительности направлены горизонтально и перпендикулярно, а разноименные в противоположные стороны. Разноименные выходы акселерометров через буферные операционные усилители подключены к дифференциальным входам усилителей разности напряжений, в которых компенсируются нулевые сигналы акселерометров, выделяются и удваиваются полезные сигналы акселерометров. Выходы дифференциальных усилителей подключены к соответствующим входам аналого-цифровых преобразователей микроконтроллера. Изобретение обеспечивает повышение чувствительности и точности измерения углов, уменьшение температурной погрешности и повышения помехоустойчивости. 1 ил.

Формула изобретения RU 2 491 507 C1

Измеритель угловых положений изделия, содержащий микромеханические акселерометры, аналого-цифровые преобразователи и микроконтроллер, отличающийся тем, что в него введены четыре буферных операционных усилителя, два дифференциальных усилителя, и в качестве акселерометров использованы два двухосевых микромеханических акселерометра, установленных таким образом, что их одноименные оси чувствительности направлены горизонтально и перпендикулярно, а разноименные в противоположные стороны, при этом разноименные выходы акселерометров через буферные операционные усилители подключены к дифференциальным входам усилителей разности напряжений, выходы которых подключены к соответствующим входам аналого-цифровых преобразователей микроконтроллера.

Документы, цитированные в отчете о поиске Патент 2013 года RU2491507C1

АНЧУТИН С.А
и др
Разборный с внутренней печью кипятильник 1922
  • Петухов Г.Г.
SU9A1
- Датчики и системы, 2011, №2, с.48-50
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УГЛОВОГО ПОЛОЖЕНИЯ ПОДВИЖНОГО ОБЪЕКТА 2006
  • Смирнов Борис Михайлович
RU2319157C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УГЛОВОГО ПОЛОЖЕНИЯ ПОДВИЖНОГО ОБЪЕКТА 2006
  • Смирнов Борис Михайлович
RU2302006C1
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВОЙ ОРИЕНТАЦИИ ОБЪЕКТА 2010
  • Богданов Максим Борисович
  • Прохорцов Алексей Вячеславович
  • Савельев Валерий Викторович
  • Власов Алексей Юрьевич
  • Данилов Максим Борисович
RU2414685C1
ИНЕРЦИАЛЬНАЯ НАВИГАЦИОННАЯ СИСТЕМА 1986
  • Гусинский Валерий Залманович
  • Лесючевский Владимир Михайлович
  • Литманович Юрий Аронович
  • Шапиро Виктор Александрович
SU1840258A1
US 7962285 B2, 14.06.2011
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1

RU 2 491 507 C1

Авторы

Блокин-Мечталин Юрий Константинович

Судаков Валерий Александрович

Заливако Владимир Юрьевич

Малютин Виктор Александрович

Даты

2013-08-27Публикация

2011-12-29Подача