СПОСОБ ПОЛУЧЕНИЯ ЕСТЕСТВЕННОГО ФЕРРИТО-МАРТЕНСИТНОГО КОМПОЗИТА Российский патент 2013 года по МПК C21D8/00 C21D8/02 

Описание патента на изобретение RU2495141C1

Изобретение относится к области металлургического и термического производства, а именно к получению естественного феррито-мартенситного композита (структура из параллельных слоев пластичного феррита и прочных волокон /слоев/ мартенсита), и может быть использовано для получения материала, используемого для броневой защиты воинского персонала, БТР, БМП, блок-постов, от поражения при стрельбе из стрелкового оружия и гранатометов.

Известен способ получения естественного феррито-мартенситного композита, основанный на проведении неполной закалки доэвтектоидной стали из межкритического интервала температур A1-A3. При этом схема обработки предполагает изначальное наличие исходной строчечной феррито-перлитной структуры. Закалка превращает аустенит в мартенсит и образует композицию из волокон мартенсита в пластичной ферритной матрице. Варьируя температуру закалки, получают объемные доли фаз, отвечающие требованиям к композиционным материалам. Например, для стали 40X для получения композиции с направленной феррито-мартенситной структурой, образцы из доэвтектоидной стали с исходной феррито-перлитной строчечнотью нагревают в межкритический интервал температур (770°C), затем проводят выдержку в течение 30 минут, необходимую для установления фазового равновесия α+γ (феррит+аустенит), и охлаждение с закритической скоростью в воде до нормальной температуры. После такой обработки сталь имеет слоистую структуру, состоящую из пластичной ферритной матрицы и прочных ориентированных волокон мартенсита. Объемная доля упрочняющей фазы не менее 50% [заявка на изобретение РФ №97107821, МПК C21D 9/40, 1999 г.].

Недостатком способа является то, что он не обеспечивает получение объемной доли упрочняющей (мартенситной) фазы, отвечающей эффективной трещиностойкости, ~20-25% (Келли А. Высокопрочные материалы / А. Келли. - М.: МИР, 1976. - 160 с, фиг.5.7б).

Известен способ обработки заготовки из доэвтектоидной углеродистой или малолегированной стали, включающий горячую прокатку и закалку из межкритического интервала температур для получения естественного феррито-мартенситного композита (Л.Н. Тялина и др. Новые композиционные материалы, Тамбов, Издательство ГОУ ВПО ТГТУ, 2011, с.17-18).

Недостатком способа является то, что он не обеспечивает высокой дисперсности упрочняющих волокон (мартенсита), которая определяется степенью деформации и не оговаривается в этом способе, а также не обеспечивает рафинирования феррита для повышения трещиностойкости композита из-за отсутствия выдержки в межкритическом интервале температур.

Техническим результатом является получение орентированной феррито-мартенситной структуры с объемной долей упрочняющей мартенситной фазы ~20-25%, а также с длиной вытянутых серных включений (Fe, Mn) S 1≥80 мкм, обеспечивающей наименьшую дискретность структурных составляющих, а следовательно, лучшие характеристики механических свойств [Келли А. Высокопрочные материалы / А. Келли. - М.: МИР, 1976. - 160 с., фиг.5.7б], и направленностью слоев мартенсита и феррита, разориентировка которых не превышает 15 угловых градусов, что обеспечивает более высокие характеристики трещиностойкости.

Технический результат достигается тем, что доэвтектоидную углеродистую или малолегированную сталь с содержанием серы на верхнем уровне марочного состава подвергают горячей прокатке со степенью обжатия (δ>70%, последующему охлаждению в межкритический интервал температур (МКИ), выдержке в этом интервале температур в течение времени, обеспечивающем рафинирование феррита за счет перехода примесей из α-твердого раствора в γ-твердый раствор, и последующей закалке.

Отличием является то, что сталь с содержанием серы на верхнем уровне марочного состава подвергают прокатке со степенью обжатия (δ>70%, (а не с произвольной степенью обжатия, как в известном способе) и последующему охлаждению в межкритический интервал температур (а не до комнатной температуры, как в известном способе), а также осуществляют выдержку в этом интервале температур в течение времени, обеспечивающем рафинирование феррита за счет перехода примесей из α-твердого раствора в γ-твердый раствор.

Ниже приведен пример осуществления изобретения.

Заготовки из стали марки 09Г2С с содержанием серы на верхнем марочном уровне в соответствии с ГОСТом 19282-73 (таблица 1) подвергают горячей деформации со степенью обжатия 75% в схеме листопрокатного стана в несколько проходов в интервале температур 1250-950°C, затем листы подстуживаются на воздухе в межкритический интервал температур (для стали 09Г2С он составляет 725-860°C / Дьяков В.Г. - Легированные стали для нефтехимического оборудования. - М.: Машиностроение. 1971, 187 с./) до температуры 770-780°C и по рольгангам поступают в проходную электропечь, где их температура опускается до температуры атмосферы печи (760°C) и обеспечивается необходимая выдержка (~45 мин) путем выбора скорости перемещения листов в печи. Следующей операцией является закалка путем спрейерного охлаждения.

Таблица 1 Содержание элементов, % по массе C Si Mn S P Cr Ni Al по примеру 0,112 0,629 1,598 0,042 0,012 0,088 0,119 0,04 по ГОСТу 0,12 0,5-0,8 1,3-1,7 0,04 0,035 0,3 0,3 0,04

Степень обжатия определяется исходя из металлографических исследований микрошлифов образцов, полученных при разных степенях обжатия. На рис.1 приведены микрошлифы, полученные при степени обжатия 60 и 75%. Анализировалась разориентировка и длина сульфидных включений. Как видно из рисунка 1a, если суммарная степень деформации меньше 75%, сульфиды имеют углы разориентировки по отношению к направлению прокатки >15 угловых градусов, а длина вытянутых серных включений (Fe, Mn) S составляет величину 1<80 мкм. Данные рис.1a подтверждаются гистограммой распределения длины l сернистых включений в образце стали 09Г2С при степени обжатия менее 75% (рис.3б). При степени обжатия 75% угол разориентировки не превышает ~5-7 угловых градусов (рис.1б), а длина вытянутых серных включений (Fe, Mn) S 1 значительно больше 80 мкм (lср~113 мкм). Данные рис.1б подтверждаются гистограммой распределения длины l сернистых включений в образце стали 09Г2С при степени обжатия 75% (рис.3a).

Температура выдержки выбирается по диаграмме состояния железо-углерод при закалке стали из МКИ по температуре, соответствующей получению количественного соотношения феррита и мартенсита 80-75/20-25%, которое считается эффективным для повышения характеристик трещиностойкости (Келли А. Высокопрочные материалы / А. Келли. - М.: МИР, 1976. - 160 с, фиг.5.7б). На рис.2 приведена диаграмма состояния железо-углерод. Как видно из рисунка 2, при температуре 760°C соотношение фаз феррит-аустенит составляет 80/20, что обуславливает выдержку при этой температуре.

Время выдержки определяется исходя из данных микрорентгеноспектрального анализа о рафинировании феррита при выдержке стали в межкритическом интервале температур в течение 20-30 минут (Легирование и хрупкость стали. Киев, институт проблем литья АН УССР, 1971, с.224-227).

Для определения характеристик трещиностойкости, полученных в образцах, обработанных по данному способу, проводились исследования кинетики распространения трещины. Для сравнения проводились исследования со сталью той же марки, обработанной на структуру сорбит отпуска, которая характеризуется наиболее высокой трещиностойкостью.

Зависимость скорости распространения трещины от числа циклов представлена на рисунке 4, где 1 - кривая для структуры сорбит отпуска, 2 - для структуры естественного феррито-мартенситного композита (ЕФМК). Видно, что разрушение стали со структурой ЕФМК, наступает через 90·104 циклов испытания, в то время как сталь, со структурой сорбит отпуска выдерживает только 78·104 циклов. Поведение трещины следующее: образовавшаяся начальная трещина не растет по фронту в диапазоне от 20·104 до 40·104 циклов, в дальнейшем происходит рост трещины по фронту, однако по ходу роста длины наблюдаются остановки, когда скорость роста практически нулевая. При этом на некоторых участках движения трещины по фронту скорость ее роста намного выше, чем для первого случая. Разрушение происходит при оставшемся «живом сечении» ~2,3 мм. Трещина в образцах, обработанных на структуру сорбит отпуска, растет с примерно одинаковой скоростью вплоть до разрушения, когда «живое сечение» составляет ~2,5 мм.

Как видно, сталь со структурой ЕФМК, выдерживает большее число циклов до разрушения, то есть обладает более высокими характеристиками трещиностойкости, нежели сталь со структурой сорбит отпуска.

Аналогичные исследования проведены со сталью марок 20, 30, 09Г2, 14Г2, 12Г6, 16ГС, 17Г1С. Результаты исследований показывают, что при степени обжатия 70% и выше, сульфиды имеют углы разориентировки по отношению к направлению прокатки, не превышающие ~5-7 угловых градусов, а длина вытянутых серных включений (Fe, Mn) S 1 значительно больше 80 мкм. Выдержка в течение времени, обеспечивающего рафинирование феррита, приводит к уменьшению хрупкости композита. Вышеуказанные условия позволяют получить композит с высокими характеристиками трещиностойкости.

Таким образом, предлагаемый способ позволяет получить в стали структуру феррито-мартенситного композита с объемной долей упрочняющей мартенситной фазы ~20-25%, а также с длиной вытянутых серных включений (Fe, Mn) S 1≥80 мкм и направленностью слоев мартенсита и феррита, разориентировка которых не превышает 15 угловых градусов, что обеспечивает более высокие характеристики трещиностойкости.

Похожие патенты RU2495141C1

название год авторы номер документа
Способ термомеханической обработки заготовок из доэвтектоидных углеродистых сталей 1978
  • Стародубов Кирилл Федорович
  • Фролов Валерий Константинович
  • Децюра Константин Яковлевич
  • Сиухин Александр Федорович
  • Колпак Виктор Потапович
  • Хусид Осип Семенович
SU767222A1
Листовая сталь для устройств броневой защиты 2020
  • Пустовойт Виктор Николаевич
  • Долгачев Юрий Вячеславович
  • Домбровский Юрий Маркович
  • Дука Валентина Владимировна
RU2806620C2
СТАЛЬНОЙ ЛИСТ С ВЫСОКОЙ МЕХАНИЧЕСКОЙ ПРОЧНОСТЬЮ, ПЛАСТИЧНОСТЬЮ И ФОРМУЕМОСТЬЮ, СПОСОБ ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЕ ТАКИХ ЛИСТОВ 2012
  • Аллен, Себастьен
  • Майо, Жан
  • Крувизье, Микаэль Дени
  • Мастрорийо, Тьерри
  • Анньон, Арно
RU2606361C2
ХОЛОДНОКАТАНЫЙ СТАЛЬНОЙ ЛИСТ С ПОКРЫТИЕМ ИЗ ЦИНКА ИЛИ ЦИНКОВОГО СПЛАВА, СПОСОБ ЕГО ПРОИЗВОДСТВА И ПРИМЕНЕНИЕ ТАКОГО СТАЛЬНОГО ЛИСТА 2012
  • Мбаке, Папа Амаду Мактар
  • Мулэн, Антуан
RU2579320C2
ХОЛОДНОКАТАНЫЙ И ОТОЖЖЁННЫЙ СТАЛЬНОЙ ЛИСТ И СПОСОБ ИЗГОТОВЛЕНИЯ 2019
  • Дрийе, Жозе
RU2803955C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНЫХ ХОЛОДНОКАТAНЫХ И ОТОЖЖЕННЫХ СТАЛЬНЫХ ЛИСТОВ И ЛИСТЫ, ПОЛУЧЕННЫЕ ЭТИМ СПОСОБОМ 2008
  • Хиль Отин Хавьер
  • Мулэн Антуан
RU2437945C2
СПОСОБ ОБРАБОТКИ СТАЛЕЙ 2000
  • Зарипова Р.Г.
  • Кайбышев О.А.
  • Салищев Г.А.
  • Фархутдинов К.Г.
RU2181776C2
СПОСОБ КОМПЛЕКСНОЙ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛИ 2011
  • Сильман Григорий Ильич
  • Серпик Людмила Григорьевна
  • Федосюк Александр Александрович
RU2503726C2
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНОЙ ЛИСТОВОЙ СТАЛИ, ХАРАКТЕРИЗУЮЩЕЙСЯ ВЫСОКИМИ ПЛАСТИЧНОСТЬЮ, ДЕФОРМИРУЕМОСТЬЮ И СВАРИВАЕМОСТЬЮ, И ПОЛУЧЕННАЯ ЛИСТОВАЯ СТАЛЬ 2018
  • Венкатасурия, Паван К
  • Чакраборти, Анирбан
  • Гассеми-Армаки, Хассан
RU2732261C1
Способ получения высокопрочного стального листа 2023
  • Мишнев Роман Владимирович
  • Борисова Юлия Игоревна
  • Ригина Людмила Григорьевна
  • Ткачёв Евгений Сергеевич
  • Борисов Сергей Иванович
  • Юзбекова Диана Юнусовна
  • Дудко Валерий Александрович
  • Гайдар Сергей Михайлович
  • Кайбышев Рустам Оскарович
RU2813064C1

Реферат патента 2013 года СПОСОБ ПОЛУЧЕНИЯ ЕСТЕСТВЕННОГО ФЕРРИТО-МАРТЕНСИТНОГО КОМПОЗИТА

Изобретение относится к области металлургического и термического производства, а именно к обработке стали с получением структуры естественного феррито-мартенситного композита - структура, включающая пластичную ферритную матрицу и дискретные твердые волокна - слои мартенсита, и может быть использовано для получения материала, используемого для броневой защиты воинского персонала, БТР, БМП, блокпостов, от поражения при стрельбе из стрелкового оружия и гранатометов. Техническим результатом является получение композита с объемной долей упрочняющей мартенситной фазы ~20-25%, а также с длиной вытянутых серных включений (Fe, Mn) S 1≥80 мкм, и направленностью слоев мартенсита и феррита, разориентировка которых не превышает 15 угловых градусов, что обеспечивает более высокие характеристики трещиностойкости. Технический результат достигается тем, что заготовку из доэвтектоидной углеродистой или малолегированной стали с содержанием серы на верхнем уровне марочного состава подвергают горячей прокатке со степенью обжатия (δ)≥70%, последующему охлаждению в межкритический интервал температур (МКИ), выдержке в этом интервале температур в течение времени, обеспечивающем рафинирование феррита за счет перехода примесей из α-твердого раствора в γ-твердый раствор, и последующей закалке. 1 табл., 4 ил., 1 пр.

Формула изобретения RU 2 495 141 C1

Способ обработки доэвтектоидной углеродистой или малолегированной стали с получением структуры феррито-мартенситного композита, характеризующийся тем, что заготовку из доэвтектоидной углеродистой или малолегированной стали с содержанием серы на верхнем уровне марочного состава подвергают горячей прокатке со степенью обжатия δ≥70%, последующему охлаждению до температуры, находящейся в межкритическом интервале температур стали, выдержке в этом интервале температур в течение времени, обеспечивающем рафинирование феррита, и последующей закалке.

Документы, цитированные в отчете о поиске Патент 2013 года RU2495141C1

ТЯЛИНА Л.Н
и др
Новые композиционные материалы
- Тамбов: Издательство ГОУ ВПО ТГТУ, 2011, с.17-18
СПОСОБ ПОЛУЧЕНИЯ ЛИСТА СТАЛИ, ИМЕЮЩЕЙ ДВУХФАЗНУЮ СТРУКТУРУ 2003
  • Хойдик Дейвид П.
RU2294385C2
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО НИЗКОЛЕГИРОВАННОГО ШТРИПСА 2009
  • Немтинов Александр Анатольевич
  • Скорохватов Николай Борисович
  • Клюквин Михаил Борисович
  • Корчагин Андрей Михайлович
  • Тихонов Сергей Михайлович
  • Голованов Александр Васильевич
RU2390568C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ ИЗ МАЛОУГЛЕРОДИСТЫХ МАРГАНЦОВИСТЫХ СТАЛЕЙ 1994
  • Артамошкин Сергей Владимирович[Ru]
  • Тетюева Тамара Викторовна[Ru]
  • Брижан Анатолий Илларионович[Ru]
  • Марченко Леонид Григорьевич[Ru]
  • Поповцев Юрий Александрович[Ru]
  • Жукова Светлана Юльевна[Ru]
  • Кривошеева Антонина Андреевна[Ua]
  • Кузьмичев Евгений Михайлович[Ua]
  • Усов Владимир Антонович[Ru]
RU2048542C1
НАНОКОМПОЗИТНЫЕ МАРТЕНСИТНЫЕ СТАЛИ 2002
  • Кусинский Гжегож Й.
  • Поллак Дейвид
  • Томас Гарет
RU2293768C2
СПОСОБ ПОЛУЧЕНИЯ СТАЛЬНОЙ ДЕТАЛИ С МНОГОФАЗНОЙ МИКРОСТРУКТУРОЙ 2006
  • Коркиье Жак
  • Деврок Жак
  • Ошар Жан-Луи
  • Лоран Жан-Пьер
  • Мулэн Антуан
  • Романовски Натали
RU2403291C2
ЖУРАВЛЕВ В.Н., Николаева О.И
Машиностроительные стали, Справочник
- М.: Машиностроение, 1981, с.36, 218, 222.

RU 2 495 141 C1

Авторы

Пустовойт Виктор Николаевич

Домбровский Юрий Маркович

Желева Алена Викторовна

Зайцева Мария Владиславовна

Даты

2013-10-10Публикация

2012-05-11Подача