ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ Российский патент 2013 года по МПК C04B35/495 

Описание патента на изобретение RU2498961C2

Изобретение относится к пьезоэлектрическим керамическим материалам на основе ниобатов натрия-калия и может быть использовано в среднечастотных радиоэлектронных устройствах, работающих в режиме приема, в том числе, в трансдукторах ультразвуковых передатчиков.

Для указанных применений материал должен обладать средним значением диэлектрической проницаемости, ε33T0, (700÷1100), достаточно высоким пьезомодулем d33 (≥200 пКл/Н), пьезочувствительностью, g33, (~20 мВ·м/Н), удельной чувствительностью, d 33 / ε 33 Т / ε 0 , (~5÷6 пКл/Н), коэффициентом электромеханической связи, Kр(~0.4), низкой механической добротностью, Qм, (<50).

Известен пьезоэлектрический керамический материал на основе ниобатов натрия-калия, включающий NaNbO3, KNbO3, LiNbO3 и CeO2. Материал имеет ε33T0=(785÷1023), d33=(148÷178) пКл/Н, g33=(21÷22) мВ·м/Н, d 33 / ε 33 Т / ε 0 = ( 5.28 ÷ 6.22 ) пКл/Н, Kр=(0.36÷0.42) (патент US 2007200084 (A1). Опубл. 24.02.2009. Авторы: Xiaoxing Wang, Hung Hom Kowloon, Kin Wing Kwong и др.; по заявке № US 20060362793, приоритет от 30.08.2007. H01L 41/18, C04B 35/495, H01L 41/187) Для указанных применений материал имеет недостаточно высокие значения d33. Кроме того, присутствие в составе дорогостоящего редкоземельного элемента - церия (Ce) делает материал промышленно не рентабельным.

Известен пьезоэлектрический керамический материал на основе ниобатов натрия-калия, включающий NaNbO3, KNbO3, LiNbO3, SrTiO3, BiFeO3. Материал имеет ε33T0=(731÷1043), d33=(90÷150) пКл/Н, g33=(13÷21) мВ·м/Н, d 33 / ε 33 Т / ε 0 = ( 3.3 ÷ 9.3 ) пКл/Н (патент EP 2218702 (A1). Опубл. 18.08.2010. Автор: Uraki Shingo; по заявке №ЕР 200857928, приоритет от 06.11.2008. B41I 2/045, B41I 2/055, C04B 35/00, H01L 41/187). Для указанных применений материал имеет недостаточно высокие значения d33.

Наиболее близким по технической сущности и достигаемому результату является пьезоэлектрический керамический материал на основе ниобатов натрия-калия, включающий Na(Nb, Ta, Sb)O3, K(Nb, Ta, Sb)O3, Li(Nb, Ta, Sb)O3 с добавками оксидов марганца (MnO2) и редкоземельного элемента - церия (CeO2). Состав материала отвечает химической формуле (Na0.475K0.475Li0.05)(Nb0.92Ta0.05, Sb0.03)O3 + 0.4%CeO2 +0.4%MnO2, то есть включает оксиды Na2O, K2O, Li2O, Nb2O5, Ta2O5, Sb2O5 CeO2 и MnO2. Материал имеет (для лучших составов) ε33т0=1150, d33=200 пКл/Н, g33=19 мВ·м/н, d 33 / ε 33 Т / ε 0 = 5.89 пКл/Н, Kр=0.43, Qм=80 (Tact Lee, K.W. Kwok, H.L. Li, H.L.W. Chan. Lead-free alkaline niobate-based transducer for ultrasonic wirebonding applications. // Sensor and Actuators A. 2009. №150. P.267-271) (прототип). Для указанных применений материал имеет слишком высокое значение Qм. Кроме того, использование в составе редкоземельного элемента - церия (Ce) приводит к удорожанию материала и изделий из него, что препятствует их массовому применению.

Задачей изобретения является снижение Qм (до значений <50) при сохранении средних значений ε33т0 (~700÷1100), достаточно высоких значений пьезомодуля d33 (~190÷200 пКл/Н), пьезочувствительности g33 (~18÷20 мВ·м/н), удельной чувствительности d 33 / ε 33 Т / ε 0 (~5÷6 пКл/Н), коэффициента электромеханической связи планарной моды колебаний Kр (~0.40). При этом из состава материала должны быть исключены редкоземельные элементы.

Указанные результаты достигаются тем, что пьезоэлектрический керамический материал на основе ниобатов натрия-калия, включающий оксиды Na2O, K2O, Nb2O5, дополнительно содержит Li2O, Ta2O5, Sb2O5, NiO при следующем соотношении компонентов, в масс.%:

Na2O=8.49÷8.67 Ta2O5=11.20÷11.44 K2O=11.00÷11.25 Sb2O5=5.35÷7.15 Nb2O5=60.68÷61.98 NiO=0.82÷0.83 Li2O=0.49÷0.65

Состав материала отвечает формуле:

LiaKbNacNbdTamSbnO3+zNiO, где а=6.00÷8.00 (в мол.%), b=42.32÷43.24 (в мол.%), c=49.68÷50.76 (в мол.%), d=82.80÷84.60 (в мол.%), m=9.20÷9.40 (в мол.%), n=6.00÷8.00 (в мол.%), a+b+c=100%, d+m+n=100%, 0≤z≤0.03.

1. Пример изготовления пьезоэлектрического керамического материала

Материал изготавливался по обычной керамической технологии следующим образом. В качестве исходных реагентов использовались гидрокарбонаты, карбонаты и оксиды следующих квалификаций: NaHCO3 - «чда», KHCO3 - «ч», Nb2O5 - «NbO-PT», Li2CO3 - «хч», Ta2O5 - «ТаО-1», Sb2O5 - «хч», NiO - «ч». Синтез осуществлялся путем однократного обжига смесей сырьевых компонентов: NaHCO3, KHCO3, Nb2O5, Li2CO3, Ta2O, Sb2O5, NiO, взятых в количествах (масс. %, в случае NaHCO3, KHCO3, Li2CO3 в пересчете на соответствующие оксиды): Na2O=8.67; K2O=11.25; Nb2O5=61.98; Li2O=0.49; Ta2O5=11.44; Sb2O5=5.35, NiO=0.82 с промежуточным помолом синтезированного продукта. Температура обжига при синтезе, Тсинт.=1223 К, длительность изотермической выдержки, τсинт=5 ч. Спекание образцов в виде столбиков Ø12 мм, высотой 15÷18 мм осуществлялось при Тсп.=1393 К, длительность изотермической выдержки, τсп=1.5 ч. Металлизация (нанесение электродов) производилась путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Твжиг.=1070 К в течение 0.5 ч. Образцы поляризовали в полиэтиленсилоксановой жидкости при температуре 410 К в течение 40 мин в постоянном электрическом поле напряженностью 4 кВ/см.

2. Пример изготовления пьезоэлектрического керамического материала

Материал изготавливался по обычной керамической технологии следующим образом. В качестве исходных реагентов использовались гидрокарбонаты, карбонаты и оксиды следующих квалификаций: NaHCO3 - «чда», KHCO3 - «ч», Nb2O5 - «NbO-PT», Li2CO3 - «хч», Ta2O5 - «ТаО-1», Sb2O5 - «хч», NiO - «ч». Синтез осуществлялся путем однократного обжига смесей сырьевых компонентов: NaHCO3, KHCO3, Nb2O5, Li2CO3, Ta2O5, Sb2O5, NiO, взятых в количествах (масс. %, в случае NaHCO3, KHCO3, Li2CO3 в пересчете на соответствующие оксиды): Na2O=8.58; K2O=11.11; Nb2O5=61.33; Li2O=0.57; Ta2O5=11.35; Sb2O5=6.24, NiO=0.82 с промежуточным помолом синтезированного продукта. Температура обжига при синтезе, Tcинт.=1223 K, длительность изотермической выдержки, τсинт=5 ч. Спекание образцов в виде столбиков Ø12 мм, высотой 15÷18 мм осуществлялось при Тсп.=1393 К, длительность изотермической выдержки, τсп=1.5 ч. Металлизация (нанесение электродов) производилась путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Tвжиг.=1070 К в течение 0.5 ч. Образцы поляризовали в полиэтиленсилоксановой жидкости при температуре 410 К в течение 40 мин в постоянном электрическом поле напряженностью 4 кВ/см.

3. Пример изготовления пьезоэлектрического керамического материала

Материал изготавливался по обычной керамической технологии следующим образом. В качестве исходных реагентов использовались гидрокарбонаты, карбонаты и оксиды следующих квалификаций: NaHCO3 - «чда», KHCO3 - «ч», Nb2O5 - «NbO-PT», Li2CO3 - «хч», Ta2O5 - «ТаО-1», Sb2O5 - «хч», NiO - «ч». Синтез осуществлялся путем однократного обжига смесей сырьевых компонентов: NaHCO3, KHCO3, Nb2O5, Li2CO3, Ta2O5, Sb2O5, NiO, взятых в количествах (масс. %, в случае NaHCO3, KHCO3, Li2CO3 в пересчете на соответствующие оксиды): Na2O=8.49; K2O=11.00; Nb2O5=60.68; Li2O=0.65; Ta2O5=11.20; Sb2O5=7.15, NiO=0.83 с промежуточным помолом синтезированного продукта. Температура обжига при синтезе, Тсинт.=203 К, длительность изотермической выдержки, τсинт=5 ч. Спекание образцов в виде столбиков Ø12 мм, высотой 15÷18 мм осуществлялось при Tcп.=1393K, длительность изотермической выдержки τсп=1,5 ч. Металлизация (нанесение электродов) производилась путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Твжиг.=1070 К в течение 0,5 ч. Образцы поляризовали в полиэтиленсилоксановой жидкости при температуре 410 К в течение 40 мин в постоянном электрическом поле напряженностью 4 кВ/см.

Электрофизические характеристики определяли в соответствии с ОСТ 11.0444-87. Измерялись относительная диэлектрическая проницаемость поляризованных образцов, ε33Т00 - диэлектрическая постоянная), пьезомодули, |d31| и d33, коэффициент электромеханической связи планарной моды колебаний, Kр, механическая добротность, Qm, скорость звука, V1E. Пьезомодуль, d33, определяли квазистатическим методом. Измерение экспериментальной плотности образцов, ρэксп, осуществляли методом гидростатического взвешивания в октане. Пьезочувствительность на толщинной моде колебаний, d33, рассчитывали по формуле d33=d3333Т; удельную чувствительность рассчитывали по формуле d 33 / ε 33 Т / ε 0 ; акустический импеданс, Za, рассчитывали по формуле Zaэксп.V1E.

На фиг.1, где изображена табл.1, приведены основные характеристики материала в зависимости от состава, а на фиг.2, где изображена табл.2, приведены основные электрофизические характеристики оптимальных составов предлагаемого материала. Результаты испытания пьезоэлектрических керамических образцов приведены в Акте.

Полученные экспериментальные данные (фиг.1, табл.1, примеры 3-5) свидетельствуют о том, что пьезоэлектрический керамический материал предлагаемого состава обладает оптимальными, с точки зрения решаемой технической задачи, характеристиками в указанном интервале величин компонентов.

Данные, приведенные на фиг.1, 2 (табл.1, 2), подтверждают преимущества предлагаемого пьезоэлектрического керамического материала по сравнению с материалом - прототипом, а именно снижение Qm (почти вдвое) до значений ~45÷49 при сохранении средних значений относительной диэлектрической проницаемости ε33Т0~1091÷1097, относительно высоких значений пьезомодуля d33~202÷203 пКл/Н, пьезочувствительности g33~20 мВ·м/Н, удельной чувствительностью d 33 / ε 33 Т / ε 0 6.1 пКл/Н, коэффициента электромеханической связи планарной мод колебаний Kр~0.42÷0.43.

Эффект снижения Qm достигается, по существу, дополнительным введением в материал, включающий Na2O, K2O, Nb2O5 оксидов Li2O, Ta2O5, Sb2O5, NiO.

Предлагаемый пьезоэлектрический керамический материал получают по обычной керамической технологии без использования редкоземельных элементов (как в прототипе), что значительно упрощает и удешевляет технологический процесс.

Среднее значение относительной диэлектрической проницаемости ε33Т0=1091÷1097 предлагаемого пьезоэлектрического керамического материала определяет основное его назначение - использование в среднечастотных преобразователях.

Это следует, прежде всего, из того, твердые растворы на основе ниобатов щелочных металлов (НЩМ) могут использоваться в качестве резонансных элементов пьезоэлектрических преобразователей в высокочастотных (ВЧ) (3.0÷30.0) МГц и очень высокочастотных (ОВЧ) (30.0÷300.0) МГц диапазонах, среднечастотном (СЧ) (0.3÷3.0) МГц диапазоне; низкочастотном (НЧ) (30.0÷300.0) кГц) и ультранизкочастотном (ОНЧ) (<30.0 кГц) диапазонах. Классификация электромагнитных волн по частотным диапазонам представлена в (Носов Ю.Н., Кукаев А.А. Энциклопедия отечественных антенн. Справочное издание. М. 2001. С.49).

При условии согласования преобразователя с нагрузкой (Ri=Rн) (обычно реализуемое в выпускаемой промышленностью радиоэлектронной аппаратуре выходное сопротивление Rн~50 Ом для высоких и средних частот и 1000 Ом для низких частот), используя формулу для емкостного сопротивления преобразователя: Ri=1/ωС, где Ri - емкостное сопротивление преобразователя. Ом; ω - круговая частота, Гц; C - емкость, Ф; - можно приблизительно оценить интервалы значений емкости C=1/2πfRi для указанных диапазонов частот, а, следовательно, и относительной диэлектрической проницаемости поляризованных элементов, ε33Т0=k·C, где k - коэффициент, зависящий от размеров элементов, ε0=8.85·10-12 Ф - диэлектрическая проницаемость вакуума; при k=1, ε33Т0=C.

На фиг.3-5, где изображены таблицы 3-5, приведены значения относительной диэлектрической проницаемости, ε33Т0, реализуемые в объемных керамических образцах в различных частотных диапазонах. Там же (*) приведены комментарии к таблицам.

Таким образом, при пониженных (средних) частотах необходимы достаточно высокие (средние) значения ε33Т0 для снижения сопротивления преобразователя, что улучшает его согласование с нагрузкой. Средние значения ε33Т0 полезны и для снижения габаритов, что важно при разработке гидроакустических устройств.

Достаточно высокие значения Kр, g33, d 33 / ε 33 Т / ε 0 определяют высокую эффективность электроакустических преобразователей в режимах приема и излучения.

Разработанный пьезоэлектрический керамический материал может быть использован в среднечастотных радиоэлектронных устройствах, работающих в режиме приема, в том числе, в трансдукторах ультразвуковых передатчиков, а также и в сейсмоприемниках, предназначенных для геофизической разведки полезных ископаемых. С их помощью регистрируются сейсмические колебания, искусственно вызванные действием взрыва. Основной параметр сейсмоприемника - чувствительность к изменению давления во внешней среде, - в значительной степени обеспечивается высоким коэффициентом d 33 / ε 33 Т / ε 0 , а средние значения ε33Т0 благоприятны для согласования сейсмоприемника, работающего в среднечастотном диапазоне, с нагрузкой.

Кроме работы на средних частотах, предлагаемый материал может быть использован в приборах медицинской диагностики, работающих на нагрузку с низкоомным входным сопротивлением, которое обеспечивает согласование с ней преобразователя. В таких устройствах низкие значения Qm разработанного материала способствуют подавлению ложных колебаний. Разработанный материал имеет низкую плотность (ρэксп.=4.52 г/см3), что приводит к значительному снижению веса изделий и уменьшению акустического импеданса (Za~19 mrayl), что необходимо для согласования с акустической нагрузкой.

Разработанный материал обладает способностью эффективно накапливать электрическую энергию (плотность запасенной электрической энергии более 2·103 Кл·В·м-3), что перспективно для его использования в качестве источника внешнего электрического поля.

Из вышесказанного следует, что технический результат изобретения достигается новой совокупностью существенных признаков, как вновь введенных, так и известных, следовательно, заявленный пьезоэлектрический керамический материал соответствует критерию патентоспособности «изобретательский уровень».

Предлагаемый пьезоэлектрический керамический материал обеспечивает технический результат, не вызывает затруднений при изготовлении, предполагает использование основных (доступных и дешевых) материалов (реагентов) и стандартного оборудования, не содержит в своем составе токсичных элементов, что свидетельствует о соответствии заявленного технического решения критерию «промышленная применяемость».

Таблица 1 N п/п Номера составов NNo образца ЭЛЕКТРОФИЗИЧЕСКИЕ ПАРАМЕТРЫ εтззо Kр |d31|, пКл/Н d33', пКл/Н d 33 / ε 33 Т / ε 0 , пм/В QМ V 1 ε * 10 3 , м/с g33 мВ·м/Н Za, mrayl 1 1088 0.41 78 200 6.1 45 4.33 20.7 19.6 2 1094 0.42 82 204 6.2 44 4.29 21.0 19.4 1 3 3 1090 0.42 79 201 6.1 46 4.32 20.8 19.5 4 1091 0.43 82 202 6.1 45 4.31 20.9 19.5 5 1092 0.42 79 203 6.1 45 4.30 21.0 19.4 Cp 1091 0.42 80 202 6.1 45 4.31 20.9 19.5 1 1095 0.43 85 204 6.1 45 4.28 21.0 19.3 2 1097 0.42 84 203 6.1 46 4.29 20.9 19.4 3 1099 0.43 83 202 6.0 47 4.30 20.7 19,4 2 4 4 1096 0.43 86 204 6.2 46 4.29 21.0 19.4 5 1098 0.43 82 203 6.0 45 4.29 20.9 19.4 Cp 1097 0.43 84 203 6.1 46 4.29 20.9 19.4 1 1094 0.41 82 203 6.1 48 4.25 20.9 19.6 2 1096 0.43 82 204 6.2 49 4.24 21.0 19.4 3 1095 0.42 84 202 6.1 49 4.22 20.8 19.5 3 5 4 1096 0.42 83 203 6.1 48 4.23 20.9 19.5 5 1093 0.43 84 201 6.1 50 4.22 20.8 19.4 Cp 1095 0.42 83 203 6.1 49 4.23 20.9 19.5

Номера составов, соответствующих формуле изобретения и примерам 3, 4, 5 табл.1 на фиг.1 описания изобретения.

Таблица 2 Номера соответствуют табл.1 Состав, масс.% Na2O K2O Nb2O5 Li2O Ta2O5 Sb2O5 NiO 3 8.67 11.25 61.98 0.49 11.44 5.35 0.82 4 8.58 11.11 61.33 0.57 11.35 6.24 0.82 5 8.49 11.00 60.68 0.65 11.20 7.15 0.83

Похожие патенты RU2498961C2

название год авторы номер документа
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ 2013
  • Резниченко Лариса Андреевна
  • Разумовская Ольга Николаевна
  • Павленко Анатолий Владимирович
  • Вербенко Илья Александрович
  • Дудкина Светлана Ивановна
  • Самойлова Виктория Игоревна
RU2542008C1
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ 2014
  • Резниченко Лариса Андреевна
  • Вербенко Илья Александрович
  • Абубакаров Абу Геланиевич
  • Дудкина Светлана Ивановна
  • Павленко Анатолий Владимирович
RU2542009C1
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ 2013
  • Резниченко Лариса Андреевна
  • Разумовская Ольга Николаевна
  • Андрюшин Константин Петрович
  • Вербенко Илья Александрович
  • Павленко Анатолий Владимирович
  • Андрюшина Инна Николаевна
  • Дудкина Светлана Ивановна
RU2542012C1
БЕССВИНЦОВЫЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ 2014
  • Резниченко Лариса Андреевна
  • Вербенко Илья Александрович
  • Павленко Анатолий Владимирович
  • Дудкина Светлана Ивановна
  • Болдырев Никита Анатольевич
RU2571465C1
БЕССВИНЦОВЫЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ 2014
  • Резниченко Лариса Андреевна
  • Вербенко Илья Александрович
  • Павленко Анатолий Владимирович
  • Марков Антон Вадимович
  • Самойлова Виктория Игоревна
RU2580538C1
Высокочастотный пьезоэлектрический керамический материал на основе ниобата натрия 2020
  • Резниченко Лариса Андреевна
  • Андрюшин Константин Петрович
  • Глазунова Екатерина Викторовна
  • Андрюшина Инна Николаевна
  • Дудкина Светлана Ивановна
  • Вербенко Илья Александрович
RU2751324C1
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ 2011
  • Резниченко Лариса Андреевна
  • Вербенко Илья Александрович
  • Садыков Хизир Амирович
  • Дудкина Светлана Ивановна
  • Павленко Анатолий Владимирович
  • Андрюшин Константин Петрович
RU2498959C2
СПОСОБ ПОЛУЧЕНИЯ ПЬЕЗОКЕРАМИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ ТВЕРДЫХ РАСТВОРОВ НИОБАТОВ КАЛИЯ-НАТРИЯ 2014
  • Смотраков Валерий Георгиевич
  • Еремкин Владимир Васильевич
  • Корчагин Владимир Иванович
RU2555847C1
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ 2014
  • Резниченко Лариса Андреевна
  • Таланов Михаил Валерьевич
  • Вербенко Илья Александрович
  • Шилкина Лидия Александровна
RU2561439C2
Низкочастотный пьезоэлектрический керамический материал на основе ниобата натрия 2020
  • Резниченко Лариса Андреевна
  • Андрюшин Константин Петрович
  • Глазунова Екатерина Викторовна
  • Дудкина Светлана Ивановна
  • Андрюшина Инна Николаевна
  • Вербенко Илья Александрович
RU2751323C1

Иллюстрации к изобретению RU 2 498 961 C2

Реферат патента 2013 года ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ

Изобретение относится к пьезоэлектрическим керамическим материалам на основе ниобатов натрия-калия и может быть использовано в среднечастотных радиоэлектронных устройствах, работающих в режиме приема, в том числе в трансдукторах ультразвуковых передатчиков. Техническим результатом изобретения является снижение механической добротности, повышение значений пьезомодуля, пьезочувствительности, удельной чувствительности и коэффициента электромеханической связи. Пьезоэлектрический керамический материал на основе ниобатов натрия-калия включает Na2O, K2O, Nb2O5, Li2O, Ta2O5, Sb2O5 и NiO при следующем соотношении компонентов, в мас.%: Na2O - 8,49-8,67; K2O - 11,00-11,25; Nb2O5 - 60,68-61,98; Li2O - 0,49-0,65; Ta2O5 - 11,20-11,44; Sb2O5 - 5,33-7,15; NiO - 0,82-0,83. 3 пр., 5 ил., 2 табл.

Формула изобретения RU 2 498 961 C2

Пьезоэлектрический керамический материал на основе ниобатов натрия-калия, включающий Na2O, K2O, Nb2O5, отличающийся тем, что дополнительно содержит Li2O, Ta2O5, Sb2O5, NiO, при следующем соотношении компонентов, мас.%:
Na2O 8,49-8,67 K2O 11,00-11,25 Nb2O5 60,68-61,98 Li2O 0,49-0,65 Ta2O5 11,20-11,44 Sb2O5 5,33-7,15 NiO 0,82-0,83

Документы, цитированные в отчете о поиске Патент 2013 года RU2498961C2

TACT LEE et al, Lead-free alkaline niobate-based transducer for ultrasonic wirebonding applications, Sensor and actuators A, 2009, N150, с.267-271
Пьезоэлектрический керамический материал 1982
  • Савоськина Анна Иосифовна
  • Афанасенко Леонид Давидович
  • Петренко Жанна Васильевна
SU1008200A1
Способ изготовления керамическихиздЕлий из НиОбАТОВ щЕлОчНыХМЕТАллОВ 1978
  • Панич Анатолий Евгеньевич
  • Гольцов Юрий Иванович
  • Фесенко Евгений Григорьевич
  • Бондаренко Виктор Степанович
  • Клевцов Александр Николаевич
  • Мальцев Василий Терентьевич
SU810639A1
Пьезоэлектрический керамический материал 1976
  • Гольцов Юрий Иванович
  • Белова Лидия Алексеевна
  • Бугаян Ирина Асвадуровна
  • Прокапало Олег Иосифович
  • Черпилло Валерий Павлович
  • Мальцев Василий Терентьевич
SU608789A1
Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек 1923
  • Григорьев П.Н.
SU2007A1

RU 2 498 961 C2

Авторы

Резниченко Лариса Андреевна

Разумовская Ольга Николаевна

Павленко Анатолий Владимирович

Дудкина Светлана Ивановна

Вербенко Илья Александрович

Павелко Алексей Александрович

Даты

2013-11-20Публикация

2011-11-09Подача