Изобретение относится к пьезоэлектрическим керамическим материалам на основе ниобата натрия и может быть использовано в высокочувствительных приемниках ультразвуковых колебаний, работающих в высокочастотном диапазоне, ультразвуковых дефектоскопах, устройствах для неразрушающего контроля материалов методом акустической эмиссии, приборах для ультразвуковой медицинской диагностики.
Для указанных применений материал должен обладать низкими значениями относительной диэлектрической проницаемости, ε33 т/ε0, (400-450) и механической добротности, Qм, (<130), высокими пьезочувствительностью, g33, (>30 мВ·м/Н), коэффициентом электромеханической связи планарной моды колебаний, Kp (>0.36), скоростью звука, V1 E, (~4.27 км/с).
Известен пьезоэлектрический керамический материал на основе ниобата натрия, включающий Na2O, K2O, Li2O, Nb2O5, Ta2O5, Sb2O5, CeO2 и MnO2. Состав материала отвечает химической формуле (Na0.475K0.475Li0.05)(Nb0.92Тa0.05,Sb0.03)O3+0.4%CeO2+0.4%MnO2. Материал имеет (для лучших составов) ε33 т/ε0=1150, d33=200 пКл/Н, g33=19 пКл/Н, Kp=0.43 [1]. Для указанных применений материал имеет слишком высокое значение ε33 т/ε0 и низкое g33.
Известен пьезоэлектрический керамический материал на основе ниобата натрия, включающий Na2O, K2O, Nb2O5, Ta2O5, Li2O. Состав материала отвечает химической формуле ((Na0.5K0.5)0.9Li0.1)Nb0.8Ta0.2O3. Материал имеет для лучших составов ε33 T/ε0≈624, d33=104 пКл/Н, Kp=0.307, g33≈11.9 мВм/Н, Qm=273 [2]. Для указанных применений материал имеет высокое значение Qm и низкие Kp и g33.
Известен пьезоэлектрический керамический материал на основе ниобата натрия, включающий Na2O, K2O, Li2O, Ta2O5, Nb2O5. Состав материала отвечает химической формуле [Li0.055(K0.5Na0.5)0.945](Nb0.99Ta0.01)O3. Материал имеет ε33 T/ε0=700, d33=150 пКл/Н, g33=24 пКл/Н, Kp=0.35, Qм=80 [3]. Для указанных применений материал имеет недостаточно низкую ε33 т/ε0 и недостаточно высокие значения g33 и Kp.
Наиболее близким по технической сущности (составу химической композиции) и достигаемому результату является пьезоэлектрический керамический материал на основе ниобата натрия, включающий Na2O, K2O, CdO, Nb2O5. Состав материала отвечает химической формуле (Na0.52K0.44Cd0.04)NbO3. Материал имеет для лучших составов ε33 T/ε0≈1360, QM=1000, V1 E=4.27 км/с [4] (прототип). Для указанных применений материал имеет недостаточно низкие значения ε33 T/ε0 и QM.
Задачей изобретения является снижение ε33 T/ε0 (до значений 400-450), Qм (до значений <130) при сохранении высоких значений Kp (>0.36), g33 (>30 мВ·м/H) и V1 E (~4.90 км/с).
Указанный результат достигается тем, что пьезоэлектрический керамический материал на основе ниобата натрия, включающий Na2O, Nb2O5, K2O, CdO, содержит указанные компоненты в следующих соотношениях, в масс.%:
Na2O 9.41-9.51,
K2O 12.25-12.42,
CdO 0.75-1.12,
Nb2O5 77.22-77.32.
Состав материала отвечает формуле (NaaKbCdc)NbO3, где
a=(0.4475-0.4525 мол.%), b=(0.5225-0.5275 мол.%), c=(0.020-0.030 мол.%). a+b+2c=100%.
Снижение содержания Cd в предлагаемом материале по сравнению с прототипом приводит к снижению суммарной электроотрицательности (ЭО) элементов в А-подрешетке, повышению разности АЭО кислорода (530 ккал/г-ат) и Cd (195 ккал/г-ат) [5], изменению характера химической связи: уменьшению степени ее ковалентности [6, 7] и, как следствие, уменьшению сегнетожесткости (СЖ) материала, характеризующейся величиной QM (величина, обратная QM, 1/QM определяет внутреннее трение материала, связанное с движением доменных границ. Чем больше 1/QM, тем мобильнее доменная структура, тем более сегнетомягкий (СМ) материал, или менее сегнетожесткий [7]).
При уменьшении количества Cd уменьшается и суммарная поляризуемость элементов в А-подрешетке. Это вызывает уменьшение спонтанной поляризации, что ведет к уменьшению спонтанной деформации и, следовательно, к уменьшению СЖ, т.е. уменьшению QM [7].
Меньшее количество неизовалентного катиона (Cd2+) со степенью окисления, превышающей в базовых элементах (Na1+, К1+), приводит к увеличению концентрации вакансий. Последнее должно вести к прерыванию цепей поляризации и уменьшению спонтанной поляризации [7, 8], а следовательно, к уменьшению СЖ, т.е. опять к уменьшению QM.
Со снижением концентрации Cd2+ связано некоторое измельчение зеренного строения и, как следствие, уменьшение ε33 т/ε0 [9].
1. Пример изготовления пьезоэлектрического керамического материала.
Материал изготавливался по обычной керамической технологии следующим образом. В качестве исходных реагентов использовались гидрокарбонаты, карбонаты и оксиды следующих квалификаций: NaHCO3 - «чда», KHCO3 - «ч», Nb2O5 - «NbO-PT», CdO - «хч».
Синтез осуществлялся путем однократного обжига смесей сырьевых компонентов: NaHCO3, KHCO3, Nb2O5, CdO, взятых в количествах (масс.%, в случае NaHCO3, KHCO3 в пересчете на соответствующие оксиды): Na2O=9.51, K2O=12.42, Nb2O5=77.32, CdO=0.75; с промежуточным помолом синтезированного продукта. Температуры обжига при синтезе Есинт.1=1220 K, Тсинт.2=1240 K, длительности изотермических выдержек τсинт.1=5 ч, τсинт.2=10 ч. Спекание образцов в виде столбиков ⌀12 мм, высотой 15-18 мм осуществлялось при Тсп.=1420 K, длительность изотермической выдержки τсп=1-5 ч. Металлизация (нанесение электродов) производилась путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Твжиг.=1070 K в течение 0.5 ч. Образцы поляризовали в полиэтиленсилоксановой жидкости при температуре 430 K в течение 15 мин в постоянном электрическом поле напряженностью 3.4 кВ/см.
2. Пример изготовления пьезоэлектрического керамического материала.
Материал изготавливался по обычной керамической технологии следующим образом. В качестве исходных реагентов использовались гидрокарбонаты, карбонаты и оксиды следующих квалификаций: NaHCO3 - «чда», KHCO3 - «ч», Nb2O5 - «NbO-PT», CdO - «хч».
Синтез осуществлялся путем однократного обжига смесей сырьевых компонентов: NaHCO3, KHCO3, Nb2O5, CdO, взятых в количествах (масс.%, в случае NaHCO3, KHCO3 в пересчете на соответствующие оксиды): Na2O=9.46, K2O=12.32, Nb2O5=77.28, CdO=0.94; с промежуточным помолом синтезированного продукта. Температуры обжига при синтезе Тсинт.1=1220 K, Тсинт.2=1240 K, длительности изотермических выдержек τсинт.1=5 ч, τсинт.2=10 ч. Спекание образцов в виде столбиков ⌀12 мм, высотой 15-18 мм осуществлялось при Тсп.=1420 K, длительность изотермической выдержки τсп=1.5 ч. Металлизация (нанесение электродов) производилась путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Твжиг.=1070 K в течение 0.5 ч. Образцы поляризовали в полиэтиленсилоксановой жидкости при температуре 430 K в течение 15 мин в постоянном электрическом поле напряженностью 3.5 кВ/см.
3. Пример изготовления пьезоэлектрического керамического материала.
Материал изготавливался по обычной керамической технологии следующим образом. В качестве исходных реагентов использовались гидрокарбонаты, карбонаты и оксиды следующих квалификаций: NaHCO3 - «чда», KHCO3 - «ч», Nb2O5 - «NbO-PT», CdO - «хч».
Синтез осуществлялся путем однократного обжига смесей сырьевых компонентов: NaHCO3, KHCO3, Nb2O5, CdO, взятых в количествах (масс.%, в случае NaHCO3, KHCO3 в пересчете на соответствующие оксиды): Na2O=9.41, K2O=12.25, Nb2O5=77.22, CdO=1.12; с промежуточным помолом синтезированного продукта. Температуры обжига при синтезе Тсинт.1=1220 K, Тсинт.2=1240 K, длительности изотермических выдержек τсинт.1=5 ч, τсинт.2=10 ч. Спекание образцов в виде столбиков ⌀12 мм, высотой 15-18 мм осуществлялось при Тсп.=1460 K, длительность изотермической выдержки τсп=1.5 ч. Металлизация (нанесение электродов) производилась путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Tвжиг.=1070 K в течение 0.5 ч. Образцы поляризовали в полиэтиленсилоксановой жидкости при температуре 420 K в течение 15 мин в постоянном электрическом поле напряженностью 3.3 кВ/см.
Электрофизические характеристики определяли в соответствии с ОСТ 11.0444-87. Измерялись относительная диэлектрическая проницаемость поляризованных образцов, ε33 T/ε0 (ε0 - диэлектрическая постоянная), пьезомодули, |d31| и d33, коэффициент электромеханической связи планарной моды колебаний, Kp, механическая добротность, Qm, скорость звука, V1 E. Пьезомодуль, d33, определяли квазистатическим методом. Измерение экспериментальной плотности образцов, ρэксп,. осуществляли методом гидростатического взвешивания в октане. Пьезочувствительность на толщинной моде колебаний, g33, рассчитывали по формуле g33=d33/ε33 T.
В таблице 1 приведены основные характеристики материала в зависимости от состава, а в таблице 2 приведены основные электрофизические характеристики оптимальных составов предлагаемого материала.
Полученных экспериментальные данные (табл.1, примеры №№3-5) свидетельствуют о том, что пьезоэлектрический керамический материал предлагаемого состава обладает оптимальными, с точки зрения решаемой технической задачи, характеристиками в указанном интервале величин концентраций.
Данные, приведенные в табл.1-2, подтверждают преимущества предлагаемого пьезоэлектрического керамического материала по сравнению с материалом-прототипом, а именно снижение диэлектрической проницаемости ε33 T/ε0 (в три раза) до значений ~400-450 при сохранении высоких значений g33 (>30 мВ·м/Н), Kp (>0.36) и невысоких значений Qм (<150).
Эффект снижения ε33 Т/ε0 и QM достигается по существу снижением содержания в материале оксида кадмия.
Достаточно низкое значение относительной диэлектрической проницаемости ε33 T/ε0=400-450, высокие g33 (>30 мВ·м/Н), Kp (>0.36) и низкая механическая добротность Qм (<130) предлагаемого пьезоэлектрического керамического материала определяет основное его назначение - использование в высокочувствительных приемниках ультразвуковых колебаний, работающих в высокочастотном диапазоне, ультразвуковых дефектоскопах, устройствах для неразрушающего контроля материалов методом акустической эмиссии. Это следует, прежде всего, из того, что твердые растворы на основе ниобатов щелочных металлов (НЩМ) могут использоваться в качестве резонансных элементов пьезоэлектрических преобразователей в высокочастотных (ВЧ) (3.0-30.0) МГц и очень высокочастотных (ОВЧ) (30.0-300.0) МГц диапазонах. Классификация электромагнитных волн по частотным диапазонам представлена в [10]. При условии согласования преобразователя с нагрузкой (Ri=Rн) (обычно реализуемое в выпускаемой промышленностью радиоэлектронной аппаратуре выходное сопротивление Rн~50 Ом для высоких частот), используя формулу для емкостного сопротивления преобразователя: Ri=1/ωС, где Ri - емкостное сопротивление преобразователя, Ом; ω - круговая частота, Гц; C - емкость, Ф; - можно приблизительно оценить интервалы значений емкости С=1/2 πfRi для указанных диапазонов частот, а следовательно, и относительной диэлектрической проницаемости поляризованных элементов, ε33 T/ε0=k·C, где k - коэффициент, зависящий от размеров элементов, ε0=8.85·10-12 Ф - диэлектрическая проницаемость вакуума; при k=1, ε33 Т/ε0=С.
В таблице 3 приведены значения относительной диэлектрической проницаемости, ε33 Т/ε0, реализуемые в объемных керамических образцах в ВЧ-диапазоне. Там же (*) приведен комментарий к таблице. Таким образом, при частотах (6.37-7.95) МГц необходимы значения ε33 Т/ε0=400-450 для снижения сопротивления преобразователя, что улучшает его согласование с нагрузкой.
Низкие значения Qm способствуют повышению отношения сигнал/шум и подавлению паразитных резонансов (ложных колебаний), искажающих форму рабочего сигнала и ухудшающих характеристики изготовленных из этого пьезокерамического материала высокочувствительных приемников ультразвуковых колебаний, являющих как самостоятельными устройствами, так компонентами сейсмодатчиков и датчиков вибрации.
Источники информации
[1]. Tact Lee, K.W. Kwok, H.L. Li, H.L.W. Chan. Lead-free alkaline niobate-based transducer for ultrasonic wirebonding applications. // Sensor and Actuators A. 2009. №150. P.268.
[2]. EP 1032057 A1, C04B 35/00, H01L 41/187, дата публикации 30.08.2000.
[3]. Seock N.S., Jeong H.C., Byung I.K., Eung S.K. Relationships between crystal structure and electrical properties of Li0.055[Agx(K0.5Na0.5)1-x]0.945(Nb1-yTay)О3 ceramics // Ceramics International 2012. №38. P.327-330.
[4]. RU 2498960, МПК C04B 35/495, дата публикации 20.11.2013.
[5]. Поваренных А.С. - Зап. Укр. Отд. Всесоюзного минералогического общества. Киев. 1962.
[6]. Барнард А. Теоретические основы неорганической химии. М., 1962.
[7]. Фесенко Е.Г., Данцигер А.Я., Разумовская О.Н. Новые пьезокерамические материалы. Изд-во Ростовского гос. Университета. Ростов-на-Дону, 1983. - 156 с.
[8]. Фесенко Е.Г. Семейство перовскита и сегнетоэлектричество. М.: Атомиздат, 1972. - 248 с.
[9]. Thomann, H. Piezoelectrishe Mechanisman in Bleizirconat - Titanat. / Z. Angew. Phys. - 1966. - V.20. - №6. - P.554-559.
[10]. Носов Ю.Н., Кукаев А.А. Энциклопедия отечественных антенн. Справочное издание. М., 2001. С.49.
название | год | авторы | номер документа |
---|---|---|---|
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ | 2011 |
|
RU2498961C2 |
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ | 2013 |
|
RU2542008C1 |
Высокочастотный пьезоэлектрический керамический материал на основе ниобата натрия | 2020 |
|
RU2751324C1 |
Низкочастотный пьезоэлектрический керамический материал на основе ниобата натрия | 2020 |
|
RU2751323C1 |
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ | 2014 |
|
RU2542009C1 |
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ | 2011 |
|
RU2498959C2 |
БЕССВИНЦОВЫЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ | 2014 |
|
RU2571465C1 |
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ | 2011 |
|
RU2498960C2 |
БЕССВИНЦОВЫЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ | 2014 |
|
RU2580538C1 |
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ | 2014 |
|
RU2548278C1 |
Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в снижении относительной диэлектрической проницаемости и механической добротности, в повышении пьезочувствительности, коэффициента электромеханической связи планарной моды колебаний, скорости звука. Пьезоэлектрический керамический материал содержит следующие компоненты, мас.%: Na2O 9,41-9,51; K2O 12,25-12,42; CdO 0,75-1,12; Nb2O5 77,22-77,32. 3 пр., 3 табл.
Пьезоэлектрический керамический материал на основе ниобата натрия, включающий Na2O, Nb2O5, K2O, CdO, отличающийся тем, что содержит указанные компоненты в следующих соотношениях, в масс.%:
Пьезоэлектрический керамический материал | 1981 |
|
SU1008198A1 |
RU 2006119368 A, 20.12.2007 | |||
ВСЕСОЮЗНАЯ 1ПАТЕНТНО-TEXIIfl^ECHA« | 0 |
|
SU346814A1 |
KR 100790407 B1, 02.01.2008 | |||
US 2007120446 A1, 31.05.2007 |
Авторы
Даты
2015-02-20—Публикация
2013-12-30—Подача