Область техники
Изобретение относится к пьезоэлектрическим керамическим материалам на основе ниобата натрия и может быть использовано для создания приёмников высокочувствительных приёмников УЗ - колебаний, сенсоров, актюаторов, линий задержки, приборов медицинской диагностики и неразрушающего дефектоскопического контроля, работающих в высокочастотном диапазоне рабочих частот 4,0÷7,0 МГц.
Уровень техники
Для указанных применений материал должен обладать средними значениями относительной диэлектрической проницаемости поляризованных образцов,
Известен пьезоэлектрический керамический материал на основе ниобата натрия, включающий Na2O, K2O, Nb2O5, Ta2O5, Li2O. Состав материала отвечает химической формуле ((Na0.5K0.5)0.9Li0.1)Nb0.8Ta0.2O3. Материал имеет для лучших составов
Известен пьезоэлектрический керамический материал на основе ниобата натрия, включающий Na2O, K2O, Li2O, Ta2O5, Nb2O5. Состав материала отвечает химической формуле [Li0.055(K0.5Na0.5)0.945](Nb0.99Ta0.01)O3. Материал имеет для лучших составов
Известен пьезоэлектрический керамический материал на основе ниобата натрия, включающий Na2O, K2O, Nb2O5, CdO [3]. Материал имеет для лучших составов
Известен пьезоэлектрический керамический материал на основе ниобата натрия, включающий Na2O, K2O, Li2O, Nb2O5, Ta2O5, Sb2O5, CeO2 и MnO2. Состав материала отвечает химической формуле (Na0.475K0.475Li0.05)(Nb0.92Ta0.05Sb0.03)O3+0.4%CeO2+0.4%MnO2. Материал имеет для лучших составов
Известен пьезоэлектрический керамический материал на основе ниобата натрия, включающий Na2O, K2O, CdO, Nb2O5. Состав материала отвечает химической формуле (Na0,52K0.44Cd0,04)NbO3. Материал имеет для лучших составов
Наиболее близким к заявляемому изобретению по составу химической композиции и достигаемому результату является пьезоэлектрический керамический материал на основе ниобата натрия, включающий Na2O, K2O, CdO, Nb2O5. Состав материала отвечает химической формуле (NaaKвCdc)NbO3, где a= 0.4475-0.4525 мол %; в=0,5225-0,5275 мол %; с=0,020-0,030 мол % (или в масс. %: Na2O 9,41-9,51; K2O 12,25-12,42; CdО 0,75-1,12; Nb2O5 77,22-77,32). Материал имеет для лучшего состава
Для указанных применений материал имеет недостаточно высокие значения
Раскрытие изобретения.
Техническим результатом настоящего изобретения является повышение относительной диэлектрической проницаемости поляризованных образцов,
Необходимость реализации указанных параметров связана с нижеследующим. В области высоких частот для снижения сопротивления преобразователя и улучшения его согласования с нагрузкой необходимы значения
Кроме того, из условия согласования преобразователя с нагрузкой (Ri=Rн), что обычно реализуется в выпускаемой промышленностью радиоэлектронной аппаратуре, выходное сопротивление нагрузки Rн~50 Ом для высоких частот, используя формулу для емкостного сопротивления преобразователя: Ri=1/ωC, где Ri - емкостное сопротивление преобразователя, Ом; ω - круговая частота, Гц; C - емкость, Ф; - можно приблизительно оценить интервалы значений емкости C=1/2πfRi для указанных диапазонов частот, а, следовательно, и относительной диэлектрической проницаемости поляризованных элементов,
Относительно низкие значения Qm способствуют повышению отношения сигнал/шум и подавлению паразитных резонансов (ложных колебаний), искажающих форму рабочего сигнала и ухудшающих характеристики изготовленных из этого пьезокерамического материала высокочувствительных приёмников УЗ - колебаний, являющихся как самостоятельными устройствами, так и компонентами более сложных устройств. Но снижение Qm ниже указанных значений нежелательно ввиду усиления механических потерь (1/Qm), затрудняющих получение коротких импульсов и равномерных амплитудно-частотных характеристик.
Высокая скорость звука определяет высокочастотный (ВЧ) диапазон эксплуатации преобразователя, а также позволяет получать заданную частоту на менее тонких пластинах, что упрощает технологию изготовления ВЧ - устройств за счёт возможности увеличения их резонансных размеров, что, в свою очередь, выгодно и с точки зрения уменьшения ёмкости преобразователя. Низкий удельный вес керамики, dэксп, приводит, с одной стороны, к значительному снижению веса изделий, что немаловажно в таких областях, где весовые характеристики являются решающими, с другой, – к уменьшению акустического импеданса z=
Указанный технический результат достигается тем, что пьезоэлектрический керамический материал на основе ниобата натрия содержит оксиды Na2O, K2O, CdO, Nb2O5, SiO2 при следующем соотношении исходных компонентов, в мас.%:
Na2O 7,05 - 7,99
K2O 13,49 - 14,73
CdO 1,83 - 1,84
Nb2O5 75,56 - 76,15
SiO2 0,53 - 0,83
Видно, что по сравнению с прототипом изменяется качественно-количественный состав материала: содержание в шихте CdO увеличилось вдвое; появляется новый компонент SiO2. При этом содержание оксидов щелочных металлов (Na2O+K2O) и ниобия (Nb2O5) практически не изменилось: в прототипе: Na2O+K2O – 21,80 масс. %; Nb2O5 77,27 масс. %; в заявке Na2O+K2O – 21,63масс.%; Nb2O5 75,86 масс.%. (Взяты средние значения концентраций исходных компонентов из вышеуказанных интервалов).
Таким образом, очевидно, что решающую роль в формировании свойств заявляемого материала играют CdO и SiO2. Ввиду низких температур плавления CdO (~900 оС) и смесей Na2O+SiO2 и K2O+SiO2 (ниже 800 оС) при твердофазном синтезе и спекании шихты и синтезированного продукта заявляемого материала могут образовываться жидкие фазы (ЖФ). Их воздействие на ниобиевые среды неоднозначно. ЖФ в ниобатах могут формировать двойные межкристаллитные границы, разупрочняющие и дестабилизирующие структуру керамики. Следствием этого является снижение Qm и
Достижение нового технического результата подтверждается таблицами и графиком, где:
Таблица 1. Расчетные значения относительной диэлектрической проницаемости
Таблица 2. Электрофизические характеристики заявляемого материала в зависимости от состава.
Таблица 3. Качественно-количественные составы материала-прототипа и заявляемого материала.
Таблица 4. Сравнение электрофизических характеристик оптимального состава заявляемого материала и материала-прототипа.
Фиг.1 - частотная зависимость относительной диэлектрической проницаемости
Осуществление изобретения
Пьезоэлектрический керамический материал на основе ниобата натрия
изготавливался методом твердофазного синтеза с последующим спеканием по обычной керамической технологии следующим образом. В качестве исходных реагентов использовались гидрокарбонаты, карбонаты и оксиды следующих квалификаций: NaHCO3 – «чда», KHCO3 – «ч», Nb2O5 – «NbO-PT», СdO – «хч», SiO2 – «чда». Синтез осуществлялся путем двукратного обжига смесей сырьевых компонентов: NaHCO3, KHCO3, Nb2O5, СdO, взятых в количествах, масс.%, в случае NaHCO3, KHCO3 в пересчете на соответствующие оксиды: Na2O7,05 - 7,99; K2O 13,49 - 14,73; CdO 1,83 – 1,84; Nb2O5 75,56 - 76,15; SiO2 0,53 - 0,83, с промежуточным помолом синтезированного продукта.
Температуры обжига при синтезе Тсинт.1=1220K, Тсинт.2=1240K, длительность изотермических выдержек τсинт.1= 5 ч, τсинт.2=10 ч. Спекание образцов в виде столбиков Ø12 мм, высотой 15÷18 мм осуществлялось при Тсп.=1420K, длительность изотермической выдержки τсп.=1,5 ч. После их резки на диски толщиной (1÷2)мм производилась металлизация (нанесение электродов) путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Твжиг.=1070K в течение 0,5 ч. Образцы поляризовали в полиэтиленсилоксановой жидкости при температуре 430K в течение 15 мин в постоянном электрическом поле напряженностью 3,3÷3.4 кВ/см. Электрофизические характеристики определяли в соответствии с ОСТ 11.0444-87 «Материалы пьезокерамические. Технические условия». Введ. 01.01.88, с помощью прецизионного LRC-метра Aglent E4980A. При этом оценивались относительная диэлектрическая проницаемость поляризованных образцов
По описанной выше технологии были выполнены образцы из семи следующих составов пьезоэлектрического керамического материала на основе ниобата натрия (примеры 1-5):
Пример 1.
Na2O 8,47; K2O12,87; CdO 1,85; Nb2O5 76,46; SiO20,35
Пример 2.
Na2O 7,99; K2O13,49; CdO1,84; Nb2O5 76,15; SiO2 0,53
Пример 3.
Na2O 7,52; K2O 14,11; CdO 1,83; Nb2O5 75,84; SiO2 0,70
Пример 4.
Na2O 7,05; K2O 14,73; CdO 1,83; Nb2O575,56; SiO2 0,83
Пример 5.
Na2O 6,58; K2O 15,33; CdO 1,82; Nb2O5 75,25; SiO2 1,02
В примерах 2, 3, 4 таблицы 2 приведены химические составы в пределах заявленных процентных соотношений и соответствующие им электрофизические свойства, полученные в результате испытаний по стандартным методикам.
Как следует из таблицы 2, примеры № 2-4, и таблицы 3, пример № 3, заявляемый пьезоэлектрический керамический материал на основе ниобата натрия характеризуется по сравнению с материалом-прототипом повышением на 40÷60 % относительной диэлектрической проницаемости поляризованных образцов,
Таким образом, по сравнению с прототипом (табл. 4) иной качественно-количественный состав обеспечивает целевой результат, не вызывает затруднений при изготовлении, предполагает использование основных доступных и дешёвых материалов и стандартного оборудования, соответствующего промышленному методу обычной керамической технологии.
Источники информации:
1. EP 1032057 A1, C04B 35/00, H01L 41/187, дата публикации 30.08.2000.
2. Seock N.S., Jeong H.C., Byung J.K., Eung S.K. Relationships between crystal Structure and electrical properties of Li0.055[Agx(K0.5-Na0.5)1-x]0.945(Nb1-yTay)O3 //Ceramics International. 2012. № 38. P. 327-330.
3. SU 1096251, МПК С04В 35/00, дата публикации 07.06.1984.
4. Lee Tact, Kwok K.W., Li H.L., Chan H.L.W. Lead - free alkaline niobate - based transducer for ultrasonic Wirebonding applications // Sensor and Actuators A. 2009. № 150. P. 268.
5. RU 2498960, МПК C04B 35/495, дата публикации 20.11.2013.
6. RU 2542012, МПК C04B3 5/495, H01L 41/187, дата публикации 20.02.2015. - прототип.
Таблица 1. Расчетные значения относительной диэлектрической проницаемости
Таблица 2. Электрофизические характеристики заявляемого материала в зависимости от состава.
* - № п/п соответствуют примерам выполнения 1-7 описания заявки.
Таблица 3. Качественно-количественные составы материала-прототипа и заявляемого материала.
Таблица 4. Сравнение электрофизических характеристик оптимального состава заявляемого материала и материала-прототипа.
название | год | авторы | номер документа |
---|---|---|---|
Низкочастотный пьезоэлектрический керамический материал на основе ниобата натрия | 2020 |
|
RU2751323C1 |
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ | 2013 |
|
RU2542012C1 |
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ | 2011 |
|
RU2498961C2 |
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ | 2014 |
|
RU2542009C1 |
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ | 2013 |
|
RU2551156C1 |
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ | 2013 |
|
RU2542008C1 |
Высокочастотный пьезоэлектрический керамический материал на основе титаната-цирконата свинца | 2021 |
|
RU2764404C1 |
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ | 2011 |
|
RU2498959C2 |
СПОСОБ ПОЛУЧЕНИЯ ПЬЕЗОКЕРАМИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ ТВЕРДЫХ РАСТВОРОВ НИОБАТОВ КАЛИЯ-НАТРИЯ | 2014 |
|
RU2555847C1 |
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ | 2014 |
|
RU2561439C2 |
Изобретение предназначено для создания устройств пьезотехники, работающих в высокочастотном диапазоне в интервале рабочих частот 4,0÷7,0 МГц. Пьезоэлектрический керамический материал содержит, мас.%: Na2O 7,05-7,99. K2O 13,49-14,73, CdO 1,83-1,84, Nb2O5 75,56-76,15, SiO2 0,53-0,83. Материал изготавливают твердофазным синтезом с последующим спеканием по обычной керамической технологии. Технический результат изобретения заключается в повышении относительной диэлектрической проницаемости поляризованных образцов, механической добротности и удельной мощности при сохранении высоких значений коэффициента электромеханической связи планарной моды колебаний, пьезомодуля, пьезочувствительности, пьезодобротности, скорости звука и низкого удельного веса керамики. 5 пр., 4 табл., 1 ил.
Высокочастотный пьезоэлектрический керамический материал на основе ниобата натрия, содержащий оксиды Na2O, K2O, CdO, Nb2O5, SiO2 при следующем соотношении компонентов, мас. %:
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ | 2013 |
|
RU2542012C1 |
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ | 2011 |
|
RU2498960C2 |
CN 108840570 A, 20.11.2018 | |||
US 3114066 A, 10.12.1963 | |||
Основный регулятор ткацкого станка | 1982 |
|
SU1032057A1 |
Авторы
Даты
2021-07-13—Публикация
2020-10-21—Подача