СПОСОБ ОЦЕНКИ КАЧЕСТВА МЫЛЬНЫХ ПЛАСТИЧНЫХ СМАЗОК НА МИНЕРАЛЬНОЙ ОСНОВЕ ПРИ ДЛИТЕЛЬНОМ ХРАНЕНИИ В ГЕРМЕТИЧНОЙ ТАРЕ Российский патент 2014 года по МПК G01N33/30 

Описание патента на изобретение RU2524646C1

Изобретение относится к области контроля качества материалов, в частности пластичных смазок на минеральной основе с мыльными загустителями, и может быть использовано как в научно-исследовательских работах, так и в квалификационных и исследовательских испытаниях при прогнозировании сроков хранения в герметичной таре.

Пластичные смазки являются структурированными коллоидными системами, образованными загустителями в смазочном масле. Физико-химические свойства таких систем, их стабильность и прочность зависят в основном от прочности структурного каркаса, образованного из волокон загустителя (дисперсной фазы). В ячейках структурного каркаса находится масло (дисперсионная среда). В качестве загустителя в мыльных смазках используют соли высших жирных кислот. Наиболее широкое распространение получили кальциевые, литиевые, натриевые смазки, загущенные мылами соответствующих металлов (Синицын В.В. Подбор и применение смазок. М., Химия, 1984, с.11).

Масла, на которых готовят смазки, могут храниться в герметичной таре в течение очень длительного времени, практически не изменяясь. Пластичные смазки, являющиеся коллоидными системами, значительно менее стабильны. В ходе длительного хранения на складах и базах горючего даже при соблюдении требований к условиям хранения у большинства смазок уровень качества заметно снижается Тем не менее, эта группа пластичных смазок широко применена в технике (Анисимов И.Г., Бадыштова К.М., Бнатов С.А. и др.; под ред. Школьникова В.М. Топлива, смазочные материалы, технические жидкости. Ассортимент и применение. Справочник. - М.: Издательский центр «Техинформ», 1999, с.278; Чулков П.В., Чулков И.П. Смазки и специальные жидкости для транспортной техники. Справочник. - М., 2001, с.12).

Как показала практика, смазки в большинстве случаев хранятся в течение довольно-таки длительного времени, исчисляемого годами, а нередко - и десятилетиями. Обычно на технике используют пластичные смазки после длительного хранения на складах и базах горючего. При длительном хранении происходит ухудшение свойств смазок, которое зависит от следующих факторов: несоблюдение нормативных условий хранения, влияние коллоидной природы и структуры пластичных смазок, влияние химического состава и технологии изготовления пластичных смазок (Отчеты ФАУ «25 Гос НИИ МО РФ «Изучение изменения качества масел, и смазок при длительном хранении, №№3031, 3032, 1983 г.).

Результаты длительного хранения пластичных смазок за 15 лет были проанализированы авторами (Отчет ФАУ «25 Гос НИИ МО РФ», №3816, 2010 г.). Анализ показал, что основными наиболее информативными показателями качества, которые меняются в процессе хранения, являются: предел прочности на сдвиг, вязкость эффективная, температура каплепадения и коллоидная стабильность. Наиболее значимые факторы, влияющие на изменение свойств при хранении: время, температура и сезонный перепад температур. Был сделан вывод о наиболее информативных показателях:

- предел прочности на сдвиг (τп.ч.) - показатель, характеризующий критическую нагрузку (напряжение сдвига), при превышении которой нарушается пропорциональность между нагрузкой и деформацией с последующим резким переходом к течению смазки, как жидкости;

- вязкость эффективная (η) - показатель, характеризующий сопротивление течению или внутреннее трение смазки при заданной скорости деформации и температуре;

- испаряемость - способность масла, входящего в состав смазки, переходить из жидкого в газообразное состояние;

- коллоидная стабильность - показатель, характеризующий способность пластичных смазок не выделять самопроизвольно масло при длительном хранении в таре под воздействием физических факторов (повышенных температур и нагрузок), то есть стабильность коллоидно-структурной системы смазки, где масло (дисперсионная среда) является обязательным компонентом.

Перед авторами стояла задача разработать способ оценки качества мыльных пластичных смазок на минеральной основе при длительном хранении в герметичной таре, который отвечал бы следующим требованиям: высокой точностью, достоверностью, оперативностью и был приближен к условиям хранения в реальных условиях.

При просмотре научно-технической литературы и источников патентной информации было выявлено, что все известные технические решения относятся к маслам, которые по своему строению, как отмечалось выше, существенно отличаются от пластичных смазок. Так, известен способ определения срока хранения смазочного масла, включающий выдерживание его в условиях окружающей среды, периодический отбор проб и определение показателей их качества. Образец масла делят на две части, одну из которых выдерживают в условиях повышенной влажности при 97÷103°C с периодическим отбором проб до резкого увеличения кислотного числа для определения индукционного периода химической стабильности. Проводят предварительную оценку срока хранения масла по химической стабильности по определенной математической зависимости. Вторую часть масла хранения масла по физической стабильности по определенной математической зависимости. Допустимый срок хранения смазочного масла определяют по наименьшему значению из двух определенных(SU, а.с. №1239592 G01N 33/30).

Известен косвенный метод определения седиментационной устойчивости моторных масел, позволяющий судить об их сроке хранения, в котором в качестве информативных показателей используют щелочное число и кинематическую вязкость (патент №2138047, G01N 33/30 и патент №2213961, G01N 33/30).

Суть вышеуказанных технических решений - создание условий искусственного старения и оценка показателей, по которым можно судить о возможности использования масел в дальнейшем.

Основным показателем старения является термоокислительная стабильность. Однако все известные технические решения не приводят данных по срокам хранения. Таким образом, авторам не удалось выявить технические решения, в которых оценивают изменение качества хранимой пластичной смазки и в зависимости от показателей качества принимают решение о сроке хранения.

Кроме того, как видно из анализа известных технических решений, ни один из способов не может быть использован при оценке сроков хранения для пластичных смазок из-за наличия структурного каркаса.

Исходя из вышеизложенного, наиболее близким к технической сущности и взятым за прототип является способ натурного хранения пластичных смазок на складах, включающий оценку исходных физико-химических показателей пластичных смазок, расфасовку в герметичную тару, закладку на заданный срок хранения при выдержке в определенных условиях складского хранения, периодический отбор проб пластичных смазок и оценку идентичных первоначальным показателей, сравнение их с исходными показателями, величину рассогласования между которыми сравнивают с допустимыми, и судят о возможности дальнейшего хранения. (Приказ заместителя Министра обороны Российской Федерации №105 от 6 апреля 1994 г. «О введении в действие инструкции об организации обеспечения качества горючего в Вооруженных Силах Российской Федерации - прототип).

Недостатками известного способа являются: длительность испытаний 5÷10 лет, низкая точность, затраты на хранение.

Технический результат изобретения - повышение точности, достоверности и оперативности за счет приближения условий испытания к реальным условиям хранения с одновременным снижением расхода пластичных смазок.

Указанный технический результат достигается тем, что в известном способе оценки качества мыльных смазок на минеральной основе при длительном хранении в герметичной таре, включающем определение исходных значений коллоидной стабильности, температуры каплепадения, вязкости эффективной, предела прочности на сдвиг, расфасовку смазок в герметичные емкости заданного объема, закладку этих емкостей на заданный срок хранения при определенных условиях хранения, периодический отбор проб смазок и определение идентичных исходным физико-химических показателей, которые сравнивают с допустимыми значениями по нормативно-техническим документам, и по величине рассогласования между этими показателями судят о качестве смазок и о возможности дальнейшего хранения, согласно изобретению закладку емкостей со смазками осуществляют в климатическую камеру тепла и холода (КТХ), количество заполненных герметичных емкостей берут на единицу больше задаваемого срока хранения, за каждый год хранения принимают цикл 24 часа, в течение которых изменяют температуру в КТХ от минус 60°C до 60°C, после чего извлекают из КТХ одну емкость, из которой отбирают пробу и определяют значения показателей, идентичных первоначальным, рассчитывают значение каждого из этих показателей, которое соответствует году хранения в натурных условиях, по формуле:

,

где z - значение показателя, соответствующее году хранения в натурных условиях;

a, b, d, e - экспериментально полученные корректирующие коэффициенты, которые составляют

для коллоидной стабильности - -0,0127, 0,5443, -0,0331 и 0,9055;

для температуры каплепадения - -0,1166, 3,1259, -0,2369 и 2,8195;

для предела прочности на сдвиг при 20°С - -3,0128, 73,3810, -0,7325 и 34,8400;

для предела прочности на сдвиг при 50°С - -3,2284, 71,9230, -0,7182 и 33,1780;

для предела прочности на сдвиг при 80°С - -0,4604, 35,3880, -0,8136, и 31,0740;

для эффективной вязкости при минус 20°С - -1,5035, 43,0420, -1,8965, и 48,5150;

для эффективной вязкости при 0°С - -1,4394, 39,0450, 39,0450, -1,7183 и 36,9500;

для эффективной вязкости при 20°С - -1,1597, 28,6890, -0,7676 и 19,5550;

с - исходное значение показателя качества, измеренное до размещения в тару;

fi - значение показателя качества пробы смазки, взятой из i-той емкости после определенного цикла в КТХ,

i - порядковый номер емкости, соответствующий году хранения в натурных условиях,

при значениях показателей в пределах допустимых значений по нормативно-техническим документам испытания продолжают, а при отклонении хотя бы одного из показателей, полученных расчетным путем, от допустимого значения по нормативно-техническим документам за срок хранения смазки принимают количество лет, численно равное количеству циклов, предшествующих изменению показателей качества, соответствующим нормам, а также тем, что расфасовку пластичных смазок осуществляют в тару, объем которой не превышает 1 дм3.

При обработке статистических данных хранения в естественных условиях авторы получили корректирующие коэффициенты а, b, d, е (табл.1),

Таблица 1 Значения корректирующих коэффициентов для каждого показателя качества мыльных смазок на минеральной основе Показатель качества Коэффициент, полученный по результатам испытания в КТХ Коэффициент, полученный по результатам опытного хранения а b d e Коллоидная стабильность -0,0127 0,5443 -0,0331 0,9055 Температура каплепадения -0,1166 3,1259 -0,2369 2,8195 Предел прочности на сдвиг при температуре 20°С -3,0128 73,3810 -0,7325 34,8400 50°С -3,2284 71,9230 -0,7182 33,1780 80°С -0,4604 35,3880 -0,8136 31,0740 Эффективная вязкость при температуре минус 20°С -1,5035 43,0420 -1,8965 48,5150 0°С -1,4394 39,0450 -1,7183 36,9500 20°С -1,1597 28,6890 -0,7676 19,5550

Условия и режим испытаний по температурному воздействию на изменение качества пластичных смазок в закрытой таре при хранении были определены экспериментально. Время испытаний по 1 циклу приняли равным 24 часам. Количество переходов от минус 60 до 60°С или от абсолютного минимума до абсолютного максимума температуры устанавливают соответственно числу лет предполагаемого хранения. Срок предполагаемого хранения смазок имитируют количеством перепадов температуры, равным количеству переходов через 0°С. В качестве КТХ использован электрический термостат камера тепла и холода по ТУ 9452-03-41450380-2000, обеспечивающий циклическую поддержку диапазона температур от минус 60 до 60°С.

Способ реализуется следующим образом.

Пример 1. Отбирают 11 емкостей смазки Литол-24 в заводской герметичной упаковке. Из емкости 1 отбирают пробу смазки и определяют исходные показатели качества (с), например, коллоидную стабильность, значение которой, согласно НТД, не должно превышать 12%. Исходное значение равно 7,6%. 10 емкостей смазки Литол-24 помещают в КТХ и проводят испытания циклами, продолжительность каждого равна 24 часам, в течение которых изменяют температуру от минус 60°С до 60°С (12 часов - охлаждение и выдерживание при минус 60°С, затем 12 часов - нагревание и выдерживание при 60°С), после каждого цикла замеряют значение исследуемых показателей (fi). После первого цикла в КТХ извлекают одну емкость, из которой отбирают пробу и определяют значения коллоидной стабильности (f1), затем, используя компьютерную программу и формулу (1), определяют расчетное значение показателя после первого цикла (z1), равное 8,0, что не превышает норму по НТД. Испытание продолжают. После первого цикла операцию повторяют и проводят второй цикл, z2=8.2. Испытание продолжают. После третьего цикла z3=10,5. После четвертого, пятого и шестого циклов значения z равны, соответственно, 11,1%, 11,7%, что не превышает норм по НТД. Испытание продолжают. После седьмого цикла z7=13,9%, что превышает значение нормы по НТД. Испытание прекращают. И за срок хранения смазки принимают шесть лет, численно равное количеству циклов, предшествующих изменению показателя качества коллоидная стабильность, соответствующего нормам НТД. Аналогично рассчитываются и другие показатели качества.

Время, затраченное на определение прогнозируемых значений показателей смазки, составляет не более 10 суток.

Пример 2. Проведены испытания различных образцов смазки Литол-24, поступивших в ФАУ «25 ГосНИИ Минобороны России» от различных заводов-производителей. Результаты испытаний заявляемым способом представлены в табл.2.

Как видно из результатов испытаний, у первого образца смазки Литол-24 после 10 циклов (240 час) испытания в КТХ все показатели соответствуют нормам. У второго образца после 4 циклов показатель коллоидная стабильность (строка 1, столбец 8) превышает допустимые нормы. У третьего образца смазки Литол-24 после восьмого цикла не соответствует нормам уже три показателя: коллоидная стабильность (строка 1, столбец 8), эффективная вязкость при минус 20° (строка 8, столбец 11), и эффективная вязкость при 0°С (строка 7, столбец 11). За срок хранения принимают предшествующее значение, при котором все показатели соответствовали нормам, то есть для первого образца - 10 лет, для второго образца - 3 года, для третьего образца - 7 лет.

Сравнительный анализ результатов испытаний пластичных смазок по заявляемому способу и способу-прототипу показал, что предлагаемый способ значительно превосходит способ-прототип по оперативности - максимальная длительность определения параметров не более 10 суток, трудоемкости и увеличении точности.

Авторы разработали компьютерную программу, позволяющую рассчитывать значения показателей качества (zi), соответствующие определенному году хранения в натурных условиях.

Таким образом, заявляемый способ является точным, достоверным и оперативным за счет приближения условий испытания к реальным условиям хранения с одновременным снижением расхода пластичных смазок.

Авторы при просмотре патентной информации и научно-технической литературы не обнаружили указанной выше совокупности существующих признаков, изложенных в формуле изобретения.

Применение изобретения позволит оперативно и достоверно оценивать качество мыльных смазок и, как результат - определение длительности хранения в герметичной таре.

Похожие патенты RU2524646C1

название год авторы номер документа
ПЛАСТИЧНАЯ СМАЗКА ДЛЯ ТЯЖЕЛОНАГРУЖЕННЫХ УЗЛОВ ТРЕНИЯ КАЧЕНИЯ И СКОЛЬЖЕНИЯ 2018
  • Колесников Владимир Иванович
  • Сычев Александр Павлович
  • Колесников Игорь Владимирович
  • Воропаев Александр Иванович
  • Мясников Филипп Васильевич
RU2672266C1
Уплотнительная пластичная смазка 1979
  • Забелина Нина Петровна
  • Сморгонская Елизавета Фадеевна
  • Мещанинов Самуил Менделеевич
  • Стрижак Владимир Иванович
  • Федоренко Зиновий Игнатьевич
  • Гирич Валерий Петрович
  • Спектор Револьт Михайлович
  • Кузнецов Вячеслав Федорович
  • Пчелкин Виктор Николаевич
  • Малеванский Владимир Дмитриевич
SU897839A1
Уплотнительная смазка для резьбовых соединений 1987
  • Малышева Татьяна Георгиевна
  • Сморгонская Елизавета Фадеевна
  • Суслов Петр Григорьевич
  • Бережанский Зиновий Борисович
  • Лебедева Валентина Михайловна
  • Жаров Владимир Николаевич
  • Якубовский Николай Васильевич
  • Щербюк Николай Давыдович
  • Ющук Виктор Михайлович
  • Губарев Александр Степанович
  • Игнатюк Анатолий Николаевич
SU1505965A1
Уплотнительная смазка для пробковых кранов газовой аппаратуры 1977
  • Забелина Нина Петровна
  • Сморгонская Елизавета Фадеевна
  • Добровольская Ольга Николаевна
  • Ретинская Александра Николаевна
  • Мещанинов Самуил Менделевич
  • Гайдуков Валерий Федорович
  • Бурнусузов Рем Павлович
SU727675A1
УПЛОТНИТЕЛЬНАЯ СМАЗКА ДЛЯ ЗАПОРНОЙ АРМАТУРЫ ГАЗОПРОВОДОВ 1996
  • Соболевская Л.В.
  • Назарова Д.В.
  • Коваленко С.И.
  • Грунтенко Г.С.
  • Трофимов Е.В.
  • Ставкин Г.П.
  • Волков П.В.
RU2101332C1
СПОСОБ УВЕЛИЧЕНИЯ ТЕМПЕРАТУРЫ КАПЛЕПАДЕНИЯ ПЛАСТИЧНОЙ ЛИТИЕВОЙ КОМПЛЕКСНОЙ СМАЗКИ 2011
  • Кузьмин Василий Николаевич
  • Пенджиев Эльман Джангир Оглы
  • Волохов Кирилл Игоревич
RU2483100C1
МНОГОЦЕЛЕВАЯ ПЛАСТИЧНАЯ СМАЗКА ДЛЯ ТЯЖЕЛОНАГРУЖЕННЫХ УЗЛОВ ТРЕНИЯ 2019
  • Евстафьев Алексей Юрьевич
  • Колыбельский Дмитрий Сергеевич
  • Порфирьев Ярослав Владимирович
  • Шувалов Сергей Александрович
  • Тонконогов Борис Петрович
  • Винокуров Владимир Арнольдович
RU2711022C1
СМАЗОЧНАЯ КОМПОЗИЦИЯ 1996
  • Киселев Петр Васильевич
  • Прохоров Михаил Петрович
  • Козлов Леонид Константинович
RU2131450C1
ПЛАСТИЧНАЯ СМАЗКА С ПОВЫШЕННОЙ РАБОТОСПОСОБНОСТЬЮ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2012
  • Нестеров Александр Васильевич
  • Окнина Наталья Владимировна
  • Кириллов Виктор Васильевич
  • Юнусов Зуфар Таирович
  • Терехин Дмитрий Викторович
  • Петриков Александр Константинович
  • Черняк Елена Александровна
  • Мельников Эдуард Леонидович
  • Бодарева Анастасия Вячеславовна
RU2524691C2
Смазка для герметизации резьбовых соединений 1990
  • Калашников Юрий Терентьевич
SU1772143A1

Реферат патента 2014 года СПОСОБ ОЦЕНКИ КАЧЕСТВА МЫЛЬНЫХ ПЛАСТИЧНЫХ СМАЗОК НА МИНЕРАЛЬНОЙ ОСНОВЕ ПРИ ДЛИТЕЛЬНОМ ХРАНЕНИИ В ГЕРМЕТИЧНОЙ ТАРЕ

Изобретение относится к области контроля качества материалов, в частности пластичных смазок на минеральной основе с мыльными загустителями, и может быть использовано при прогнозировании сроков хранения в герметичной таре. Определяют исходные значения наиболее информативных показателей качества смазок. Осуществляют закладку емкостей со смазками в климатическую камеру тепла и холода (КТХ). За каждый год хранения принимают цикл 24 часа, в течение которых изменяют температуру от минус 60°C до 60°C. После каждого цикла в КТХ определяют значения показателей, идентичных первоначальным. Рассчитывают значение каждого из этих показателей, которое соответствует году хранения в натурных условиях, по выведенной формуле с помощью разработанной компьютерной программы. При значениях показателей в пределах допустимых значений испытания продолжают, а при отклонении хотя бы одного из показателей, полученных расчетным путем, от допустимого значения, за срок хранения смазки принимают количество лет, численно равное количеству циклов, предшествующих изменению показателей качества, не соответствующих нормам. Достигается повышение точности, достоверности, оперативности и снижение расхода пластичных смазок.

1 з.п. ф-лы, 1 пр. 2 табл.

Формула изобретения RU 2 524 646 C1

1. Способ оценки качества мыльных смазок на минеральной основе при длительном хранении в герметичной таре, включающий, определение исходных значений коллоидной стабильности, температуры каплепадения, вязкости эффективной и предела прочности на сдвиг, расфасовку смазок в герметичные емкости заданного объема, закладку этих емкостей на заданный срок хранения при определенных условиях хранения, периодический отбор проб смазок и определение физико-химических показателей, идентичных исходным, которые сравнивают с допустимыми значениями по нормативно-техническим документам и по величине рассогласования между этими показателями судят о качестве смазок и о возможности дальнейшего хранения, отличающийся тем, что закладку емкостей со смазками осуществляют в климатическую камеру тепла и холода (КТХ), количество заполненных герметичных емкостей берут на единицу больше задаваемого срока хранения, за каждый год хранения принимают цикл 24 часа, в течение которых изменяют температуру в КТХ от минус 60°С до 60°С, после чего извлекают из КТХ одну емкость, из которой отбирают пробу и определяют значения показателей, идентичных первоначальным, рассчитывают значение каждого из этих показателей, которое соответствует году хранения в натурных условиях, по формуле:
,
где z - значение показателя, соответствующее году хранения в натурных условиях;
a, b, d, е - экспериментально полученные коэффициенты, которые составляют для коллоидной стабильности - -0,0127, 0,5443, -0,0331 и 0,9055;
для температуры каплепадения - -0,1166, 3,1259, -0,2369 и 2,8195;
для предела прочности на сдвиг при 20°С - -3,0128, 73,3810, - 0,7325 и 34,8400;
для предела прочности на сдвиг при 50°С - -3,2284, 71,9230, -0,7182 и 33,1780;
для предела прочности на сдвиг при 80°С - -0,4604, 35,3880, -0,8136, и 31,0740;
для эффективной вязкости при минус 20°С - -1,5035, 43,0420, -1,8965, и 48,5150;
для эффективной вязкости при 0°С - -1,4394, 39,0450, 39,0450, -1,7183 и 36,9500;
для эффективной вязкости при 20°С - -1,1597, 28,6890, -0,7676 и 19,5550;
с - исходное значение показателя качества, измеренное до размещения в тару;
fi - значение показателя качества пробы смазки, взятой из i-той емкости после определенного цикла в КТХ,
i - порядковый номер емкости, соответствующий году хранения в натурных условиях,
при значениях показателей в пределах допустимых значений по нормативно-техническим документам испытания продолжают, а при отклонении хотя бы одного из этих показателей, полученных расчетным путем, от допустимого значения по нормативно-техническим документам, за срок хранения смазки принимают количество лет, численно равное количеству циклов, предшествующих изменению показателей качества, соответствующим нормам.

2. Способ оценки качества мыльных смазок на минеральной основе при длительном хранении в герметичной таре, по п.1, отличающийся тем, что расфасовку пластичных смазок осуществляют в тару, объем которой не превышает 1 дм3.

Документы, цитированные в отчете о поиске Патент 2014 года RU2524646C1

Способ определения воды в пластических смазках 1986
  • Никитина Любовь Всеволодовна
  • Никоноров Евгений Михайлович
SU1402938A1
СПОСОБ ОПРЕДЕЛЕНИЯ РАБОТОСПОСОБНОСТИ ПЛАСТИЧНОЙ СМАЗКИ 1972
SU427281A1
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛЛОИДНОЙ СТАБИЛЬНОСТИ ПЛАСТИЧНЫХ СМАЗОК И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Белоусов Петр Васильевич
  • Краснокутский Николай Иванович
  • Лесников Василий Васильевич
RU2395808C1
Способ определения реологических характеристик пластичных смазок 1986
  • Трилиский Константин Константинович
  • Ищук Юрий Лукич
  • Макаренко Александр Петрович
SU1395992A2
Способ определения эффективности смазок 1989
  • Диамантопуло Константин Константинович
  • Косенко Николай Николаевич
  • Маленко Александр Николаевич
  • Подкер Борис Фимович
  • Каргин Борис Сергеевич
SU1804941A1
KR 20120118342 A, 26.10.2012
JP 201213566 A, 19.01.2012
JP 2008003079 A, 10.01.0008

RU 2 524 646 C1

Авторы

Чулков Игорь Павлович

Одинец Людмила Георгиевна

Даты

2014-07-27Публикация

2013-02-12Подача