Изобретение относится к обработке материалов давлением и может быть использовано для получения нанокристаллических заготовок металлов и сплавов с улучшенными физико-механическими свойствами для применения в машиностроении, авиадвигателестроении, в медицине для изготовления имплантатов.
Известен способ обработки металлов равноканальным угловым прессованием (РКУП), по которому в металле получают ультрамелкозернистую (УМЗ) структуру, обеспечивающую улучшение физико-механических характеристик (Сегал В.М. Пластическая обработка металлов простым сдвигом / В.М. Сегал, В.И. Резников, А.С. Дробышевкий, В.И. Копылов // Известия АН СССР. Металлы. - 1981. - С.115-123). РКУП заключается в деформации заготовок сдвигом в зоне пересечения каналов равного сечения. Заготовка неоднократно прессуется в специальной оснастке через два канала с одинаковыми поперечными сечениями, пересекающимися обычно под углом от 90 до 120°. В случае труднодеформируемых материалов деформация осуществляется при повышенных температурах. Метод РКУП позволяет получить УМЗ-структуру с размером зерна около 200 нм в массивных образцах диаметром от 10 до 60 мм и длиной от 100 до 350 мм (Валиев Р.З., Александров И.В. Объемные наноструктурные металлические материалы: получение, структура и свойства. - М.: ИКЦ «Академкнига», 2007. - 398 с).
Недостаток РКУП заключается в следующем. С его помощью невозможно измельчать зерно металла до нанокристаллического (НК) состояния с размером зерна менее 100 нм (Валиев Р.З., Александров И.В. Объемные наноструктурные металлические материалы: получение, структура и свойства. - М.: ИКЦ «Академкнига», 2007. - 398 с).
Известен другой способ обработки металлов и сплавов - интенсивная пластическая деформация кручением под высоким давлением (ИПДК). ИПДК позволяет достигать наиболее высоких степеней деформации
Недостатки известного способа заключаются в следующем. Известно, что при ИПДК степень деформации е зависит от радиуса г образца по формуле:
Наиболее близким к заявляемому является способ комбинированной интенсивной пластической деформации (RU 2240197, МПК B21J 5/00, C22F 1/18, опубл. 20.11.2004), в котором процесс осуществляют в следующий последовательности: деформация кручением в винтовом канале, затем равноканальное угловое прессование, при этом заготовку дополнительно подвергают низкотемпературному отжигу для снятия внутренних напряжений.
Недостатком прототипа является невозможность измельчать зерно металла до нанокристаллического (НК) состояния с размером зерна менее 100 нм, что не обеспечивает обрабатываемому материалу высоких физико-механических свойств.
Задачей изобретения является улучшение физико-механических свойств обрабатываемого металла, в частности повышение твердости, за счет создания в металле однородной наноструктуры с размером зерна менее 100 нм.
Поставленная задача решается способом комбинированной интенсивной пластической деформации заготовок, включающим деформацию кручением и равноканальное угловое прессование. В отличие от прототипа деформацию кручением осуществляют после равноканального углового прессования, при котором в цилиндрической заготовке формируют ультрамелкозернистую структуру с размером зерна 200-300 нм, затем заготовку разрезают на диски, а каждый диск подвергают интенсивной пластической деформации кручением при помощи двух вращающихся бойков - верхнего и нижнего, причем деформацию кручением проводят при комнатной температуре под давлением 4-6 ГПа, при количестве оборотов бойков n≤2, с обеспечением формирования однородной нанокристаллической структуры в заготовке с размером зерна ≤100 нм.
Согласно изобретению на поверхности нижнего бойка выполнена канавка.
Технический результат достигается сочетанием РКУП+ИПДК в указанных режимах, что позволяет сформировать в материале однородную нанокристаллическую структуру с размером зерна ≤100 нм, приводящую к повышению механических характеристик материала.
Способ осуществляют следующим образом.
На первом этапе цилиндрическую заготовку подвергают РКУП при таких температурах и количестве циклов, которые обеспечивают формирование однородной УМЗ структуры в выбранном материале с размером зерна 200-300 нм.
После окончания этапа РКУП заготовку вынимают из оснастки и охлаждают до комнатной температуры. Проводится контроль микроструктуры и микротвердости в полученной заготовке.
После РКУП цилиндрическую заготовку разрезают на диски толщиной 0,8-1,5 мм. Далее заготовка-диск подвергается ИПДК при комнатной температуре под давлением 4-6 ГПа и количестве оборотов бойков n=1-2. В результате данной обработки происходит дополнительное измельчение зерна до размера ≤100 нм с формированием в материале заготовки НК структуры. После окончания ИПДК повторно проводят контроль микроструктуры и микротвердости образца.
Пример конкретного выполнения.
В качестве заготовки использовали пруток из титана Grade-4 диаметром 20 мм и длиной 80 мм. На первом этапе заготовку подвергали РКУП при температуре 450°C с числом циклов n=5. В результате в материале формировалась однородная УМЗ структура с размером зерна около 300 нм.
После окончания РКУП заготовку вынимали из оснастки и охлаждали до комнатной температуры. Проводился контроль микроструктуры и микротвердости полученной заготовки.
Затем заготовку разрезали на диски толщиной 1.1 мм и диаметром 20 мм.
На следующем этапе заготовку-диск подвергали ИПДК на бойках диаметром 20 мм с канавкой на поверхности нижнего бойка глубиной 0.7 мм, под давлением 6 ГПа и количестве оборотов бойков n=2. В результате ИПДК происходит дополнительное измельчение зерна материала заготовки, что приводит к формированию ПК структуры с размером зерна менее 100 нм по всему объему заготовки-диска. После окончания ИПДК повторно проводили контроль микроструктуры и микротвердости.
В таблице приведены сравнительные значения микротвердости в образцах из Ti Grade-4, полученных по традиционным схемам и по заявляемому способу.
Из таблицы следует, что в результате обработки по заявляемому способу в материале заготовки получают однородную нанокристаллическую структуру и высокие показатели микротвердости.
Таким образом, предлагаемый способ позволяет улучшить физико-механические свойства обрабатываемого металла, в частности повысить микротвердость, за счет создания в металле однородной наноструктуры с размером зерна менее 100 нм. Данная обработка позволяет получать наноструктурные образцы из титана и сплава TiNi, в том числе для изготовления медицинских имплантатов.
название | год | авторы | номер документа |
---|---|---|---|
УЛЬТРАМЕЛКОЗЕРНИСТЫЙ МЕДНЫЙ СПЛАВ СИСТЕМЫ Cu-Cr И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2011 |
|
RU2484175C1 |
УЛЬТРАМЕЛКОЗЕРНИСТЫЕ АЛЮМИНИЕВЫЕ СПЛАВЫ ДЛЯ ЭЛЕКТРОТЕХНИЧЕСКИХ ИЗДЕЛИЙ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ (ВАРИАНТЫ) | 2011 |
|
RU2478136C2 |
УЛЬТРАМЕЛКОЗЕРНИСТЫЙ ДВУХФАЗНЫЙ АЛЬФА-БЕТА ТИТАНОВЫЙ СПЛАВ С ПОВЫШЕННЫМ УРОВНЕМ МЕХАНИЧЕСКИХ СВОЙСТВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2012 |
|
RU2490356C1 |
Проводниковый ультрамелкозернистый алюминиевый сплав и способ его получения | 2015 |
|
RU2616316C1 |
Способ гибридной обработки магниевых сплавов | 2019 |
|
RU2716612C1 |
НАНОСТРУКТУРНЫЙ ТЕХНИЧЕСКИ ЧИСТЫЙ ТИТАН ДЛЯ БИОМЕДИЦИНЫ И СПОСОБ ПОЛУЧЕНИЯ ПРУТКА ИЗ НЕГО | 2008 |
|
RU2383654C1 |
Ультрамелкозернистые алюминиевые сплавы для высокопрочных изделий, изготовленных в условиях сверхпластичности, и способ получения изделий | 2020 |
|
RU2739926C1 |
Способ комбинированной обработки титана для биомедицинского применения | 2023 |
|
RU2823221C1 |
Термостойкий проводниковый ультрамелкозернистый алюминиевый сплав и способ его получения | 2017 |
|
RU2667271C1 |
СПОСОБ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ ПОД ВЫСОКИМ ЦИКЛИЧЕСКИМ ДАВЛЕНИЕМ | 2013 |
|
RU2547984C1 |
Изобретение относится к области обработки давлением и может быть использовано для получения нанокристаллических заготовок металлов и сплавов с улучшенными физико-механическими свойствами. Производят равноканальное угловое прессование цилиндрической заготовки. При этом в металле заготовки формируют ультрамелкозернистую структуру с размером зерна 200-300 нм. Затем заготовку разрезают на диски, каждый из которых подвергают интенсивной пластической деформации кручением при помощи двух вращающихся бойков. Деформацию кручением проводят при комнатной температуре под давлением 4-6 ГПа при количестве оборотов бойков n
1. Способ комбинированной интенсивной пластической деформации металлических заготовок, включающий деформацию кручением и равноканальное угловое прессование, отличающийся тем, что деформацию кручением осуществляют после равноканального углового прессования, при котором в металле цилиндрической заготовки формируют ультрамелкозернистую структуру с размером зерна 200-300 нм, затем заготовку разрезают на диски, а каждый диск подвергают интенсивной пластической деформации кручением при помощи двух вращающихся бойков - верхнего и нижнего, причем деформацию кручением проводят при комнатной температуре под давлением 4-6 ГПа при количестве оборотов бойков n≤2 с обеспечением формирования однородной нанокристаллической структуры в заготовке с размером зерна ≤100 нм.
2. Способ по п.1, отличающийся тем, что на поверхности нижнего бойка выполнена канавка.
СПОСОБ КОМБИНИРОВАННОЙ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ ЗАГОТОВОК | 2003 |
|
RU2240197C1 |
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ МАТЕРИАЛОВ ДАВЛЕНИЕМ | 2000 |
|
RU2188091C2 |
УСТРОЙСТВО ДЛЯ ДЕФОРМАЦИОННОЙ ОБРАБОТКИ ЗАГОТОВОК | 1999 |
|
RU2172350C2 |
EP 1861211 B1, 07.11.2012 | |||
KR 1020020075183 A, 04.10.2002 |
Авторы
Даты
2014-09-27—Публикация
2013-04-08—Подача