СПОСОБ КОНТРОЛЯ ВЫСТАВКИ ГИРОСТАБИЛИЗИРОВАННОЙ ПЛАТФОРМЫ ИНЕРЦИАЛЬНОЙ СИСТЕМЫ Российский патент 2015 года по МПК G01C25/00 

Описание патента на изобретение RU2541152C1

Изобретение относится к навигационной технике и может быть использовано для контроля гиростабилизированных платформ космического назначения при заводских и предпусковых испытаниях систем управления ракетоносителей, разгонных блоков, космических и летательных аппаратов.

Известен способ выставки инерциальной системы управления в режиме гирокомпасирования с оптическим контролем [1]. С помощью системы, работающей в этом режиме, платформа до момента старта удерживается в горизонте и выставляется по азимуту. При этом для постоянных по величине погрешностей акселерометров и гироскопов предусмотрено введение соответствующих балансировочных сигналов.

Однако этот способ при использовании его в целях контроля точности гирокомпасирования прецизионных инерциальных систем обладает низкой точностью, т.к. при выработке балансировочных сигналов учитывает только постоянные (систематические) составляющие погрешностей акселерометров и гироскопов и не учитывает случайных составляющих. Так, известно, что случайная составляющая дрейфа гироскопа величиной 0.01 град/час вызывает для средних широт погрешность гирокомпасирования порядка 4 угл.мин. Другим недостатком известного способа является необходимость размещения на внутренней раме карданова подвеса гиростабилизированной платформы оптического элемента (зеркало, призма) и обеспечение с ним через герметичное прозрачное окно оптической связи с опорным геодезическим направлением, что существенно усложняет конструкцию инерциальной системы.

Наиболее близким техническим решением является способ контроля выставки гиростабилизированной платформы инерциальной системы, включающий начальную выставку, определение ориентации системы координат, связанной с гиростабилизированной платформой, относительно местной горизонтальной системы координат, связанной с Землей, вычисление результата автономного определения азимута гиростабилизированной платформы [2].

Недостатком известного способа при его применении для контроля результата выставки гиростабилизированной платформы в азимуте является малая достоверность контроля, т.к. выставка осуществляется только средствами инерциальной системы, в которую входит гиростабилизированная платформа, не используя при этом внешние независимые средства.

Технический результат изобретения заключается в повышении достоверности контроля начальной выставки гиростабилизированной платформы инерциальной системы.

Указанный технический результат достигается тем, что в известном способе контроля выставки гиростабилизированной платформы инерциальной системы, включающем начальную выставку, определение ориентации системы координат, связанной с гиростабилизированной платформой, относительно местной горизонтальной системы координат, связанной с Землей, вычисление результата автономного определения азимута гиростабилизированной платформы αη, дополнительно определяют астрономический азимут АКЭ контрольного элемента гиростабилизированной платформы, положение нормали к которому совпадает с нулевым отсчетом датчика угла φ, на момент окончания начальной выставки фиксируют угол φ гиростабилизированной платформы вокруг оси карданова подвеса и оспределяют погрешность гирокомпасирования ΔA:

ΔA=αηКЭ-φ,

считают выставку гиростабилизированной платформы прошедшей контроль, если погрешность гирокомпасирования не превышает допустимого значения.

На фиг.1 представлены системы координат, используемые при контроле начальной выставки, представлены системы координат, используемые при контроле начальной выставки: система координат X0, Y0, Z0, реализуемая ГСП, и местная горизонтальная система координат ζ, η, ξ, ось η которой имеет направление, противоположное направлению g, а ось ξ направлена в сторону Севера. Обе системы координат - ортогональные правые с началом 0 в месте расположения ГСП.

На фиг.2 представлена схема расположения контрольного элемента, установленного на корпусе гиростабилизированной платформы, геодезического знака, которым оборудовано место пуска ракет, и показаны угловые величины, используемые при определении астрономического азимута контрольного элемента.

На фиг.3 представлена упрощенная кинематическая схема гиростабилизированной платформы и показаны угловые величины, используемые при реализации способа.

Способ контроля выставки гиростабилизированной платформы (ГСП) инерциальной системы реализуют следующим образом.

Осуществляют начальную выставку ГСП известным методом гирокомпасирования, сущность которого заключается в определении матрицы C0 направляющих косинусов системы координат X0, Y0, Z0, реализуемой ГСП, относительно местной горизонтальной системы координат ζ, η, ξ, одна из горизонтальных осей (ξ) которой ориентирована на Север (фиг.1).

При определении матрицы C0 используют информацию акселерометров в четырех ориентациях ГСП, работающей в инерциальном режиме. В этих ориентациях плоскость X0, Z0, реализуемую ГСП, приводят в плоскость местного горизонта, а ось OX0 последовательно ориентируют в направлениях на Север, Юг, в направлении, противоположном полету, и в направлении полета. После заключительной ориентации плоскость X0, Z0 ГСП ориентирована в плоскости горизонта и ось X0 - в направлении полета.

По завершении начальной выставки по датчикам углов, расположенных на осях карданова подвеса, производят измерение углов φ, ψ, υ, характеризующих угловое положение ГСП относительно корпуса.

Из матрицы C0 вычисляют величину угла αη между направлением на Север и проекцией на плоскость горизонта оси X0 ГСП:

α η = a r c t g ( C 0 , 13 / C 0 , 11 ) , ( 1 )

где C0, ij - элемент i-й строки j-го столбца матрицы C0 на момент завершения начальной выставки.

Определяют азимут нормали контрольного элемента АКЭ:

А К Э = А Г З А n Г З , ( 2 )

где АГЗ - астрономический азимут визирного направления на удаленный геодезический знак. Определяется однократно одним из известных методов, применяемых в геодезии, при оборудовании места пуска ракет [3];

An-ГЗ - угол между направлением на геодезический знак и нормалью к контрольному элементу. Определяется при помощи теодолита, расположенного в плоскости I-III стабилизации изделия со стороны контрольного элемента (фиг.2), по разнице отсчетов по лимбу теодолита при наведении теодолита сначала на внешнюю зеркальную поверхность контрольного элемента (нормаль КЭ), а затем на геодезический знак.

Положение ГСП в горизонтальной плоскости по азимуту (фиг.3) определяется углом φ, измеряемым датчиком угла карданова подвеса ГСП, между направлением полета и нормалью к контрольному элементу (КЭ), расположенному на корпусе ГСП таким образом, что положение его нормали соответствует нулевому отсчету датчика угла по φ. В качестве контрольного элемента обычно используют зеркало.

При идеальном гирокомпасировании (фиг.3) будет выполняться соотношение:

α η = А К Э + ϕ ( 3 )

Однако из-за инструментальных погрешностей ГСП, главным образом из-за нестабильности дрейфов ГСП, при регистрации выходных сигналов акселерометров в различных ориентациях ГСП на практике возникает погрешность гирокомпасирования ΔА, определяемая как:

Δ А = α η А К Э ϕ ( 4 )

Считают выставку гиростабилизированной платформы прошедшей контроль, если погрешность гирокомпасирования ΔА не превышает допустимого значения.

Так, например, для обеспечения вывода космических аппаратов телекоммуникационного назначения это допустимое значение составляет 6 угловых минут. В этом случае при получении значения менее 6 угловых минут ГСП считается прошедшей контроль с положительными результатами для обеспечения требуемой точности вывода космического аппарата.

Предельная погрешность δА предлагаемого метода контроля может быть определена как:

δ А = δ α η 2 + δ А К Э 2 + δ ϕ 2 , ( 5 )

где δαη - погрешность определения матрицы C0 по информации акселерометров;

δАКЭ - погрешность определения азимута нормали КЭ АКЭ при помощи теодолита и использования азимута направления на геодезический знак АГЗ;

δφ - погрешность определения положения ГСП датчиком угла φ.

При использовании акселерометров со случайной составляющей погрешности 10-5 g, азимута АГЗ с точностью 20 угл.с, датчика угла φ с ценой младшего разряда 20 угл.с, т.е. при δαη=2 угл.с, δАКЭ=20 угл.с и δφ=20 угл.с предельная погрешность контроля выставки ГСП по азимуту составляет 28.3 угл.с.

Таким образом, предложенный способ обеспечивает требуемую точность и позволяет повысить достоверность контроля начальной выставки гиростабилизированной платформы инерциальной системы за счет осуществления контроля с помощью независимых оптических и геодезических средств.

Источники информации

1. «Инерциальная навигация» под редакцией К.Ф.О' Доннела, М., издательство «Наука», 1969, стр.514.

2. «Авиационные приборы и навигационные системы» под редакцией О.А. Бабича, издание ВВИА им. Н.Е. Жуковского, 1981, стр.523-525.

3. «Справочник геодезиста» под редакцией В.Д. Большакова, Г.П. Левчука, книга 1, М., издательство «Недра», 1985, стр.257-259, стр.428-435.

Похожие патенты RU2541152C1

название год авторы номер документа
СПОСОБ НАЧАЛЬНОЙ ВЫСТАВКИ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ 2002
  • Андреев А.Г.
  • Ермаков В.С.
  • Северов Л.А.
  • Максимов А.Г.
  • Якушин С.М.
RU2215994C1
СПОСОБ КОНТРОЛЯ ГИРОСТАБИЛИЗИРОВАННОЙ ПЛАТФОРМЫ 2011
  • Бровкин Александр Григорьевич
  • Чекалин Владимир Иванович
RU2491508C1
СПОСОБ ОТЛАДКИ БОРТОВОГО ГРАВИТАЦИОННОГО ГРАДИЕНТОМЕТРА 1988
  • Сорока А.И.
  • Васин М.Г.
SU1517582A1
УСТРОЙСТВО АВТОМАТИЧЕСКОЙ ВЫСТАВКИ ГИРОСТАБИЛИЗИРОВАННОЙ ПЛАТФОРМЫ ИНЕРЦИАЛЬНОЙ СИСТЕМЫ 1993
  • Александров К.С.
  • Богданов В.С.
  • Вожик В.Г.
  • Кедров В.Д.
  • Леви Ю.В.
  • Сабанина Н.С.
  • Цвинтарный В.Я.
  • Цыпкина Г.Я.
RU2062990C1
ГРАВИМЕТРИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ УКЛОНЕНИЯ ОТВЕСНОЙ ЛИНИИ В ОКЕАНЕ НА ПОДВИЖНОМ ОБЪЕКТЕ 2007
  • Добротворский Александр Николаевич
  • Денесюк Евгений Андреевич
  • Катенин Владимир Александрович
  • Иванов Борис Евгеньевич
RU2348009C1
Способ определения параметров ориентации объекта при помощи полуаналитической инерциальной навигационной системы с географической ориентацией осей четырехосной гироплатформы 2022
  • Редькин Сергей Петрович
RU2782334C1
СПОСОБ ОТЛАДКИ БОРТОВОГО ГРАВИТАЦИОННОГО ГРАДИЕНТОМЕТРА 1989
  • Васин М.Г.
  • Сорока А.И.
SU1823661A1
СИСТЕМА УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ С КОМПЛЕКСНЫМ НАВИГАЦИОННЫМ УСТРОЙСТВОМ 1994
  • Никольцев В.А.
  • Войнов Е.А.
  • Подвальных А.С.
  • Яковлев В.Н.
  • Симановский И.В.
  • Подоплекин Ю.Ф.
  • Коржавин Г.А.
  • Андриевский В.Р.
  • Якобсон А.Б.
  • Цвинтарный В.Я.
  • Ефремов Г.А.
  • Царев В.П.
  • Мартыненко В.Т.
RU2046736C1
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ НАВЕДЕНИЯ ДОВОДОЧНЫХ СТУПЕНЕЙ РАЗЛИЧНОГО НАЗНАЧЕНИЯ 2010
  • Макарченко Фёдор Иванович
  • Румянцев Геннадий Николаевич
RU2440557C9
НАВИГАЦИОННЫЙ КОМПЛЕКС 2007
  • Добротворский Александр Николаевич
  • Денесюк Евгений Андреевич
  • Катенин Владимир Александрович
  • Иванов Борис Евгеньевич
RU2348011C1

Иллюстрации к изобретению RU 2 541 152 C1

Реферат патента 2015 года СПОСОБ КОНТРОЛЯ ВЫСТАВКИ ГИРОСТАБИЛИЗИРОВАННОЙ ПЛАТФОРМЫ ИНЕРЦИАЛЬНОЙ СИСТЕМЫ

Изобретение относится к навигационной технике и может быть использовано для контроля гиростабилизированных платформ инерциальной системы космического назначения при заводских и предпусковых испытаниях систем управления ракетоносителей, разгонных блоков, космических и летательных аппаратов. Технический результат - повышение достоверности контроля начальной выставки гиростабилизированной платформы. Для этого осуществляют начальную выставку гиростабилизированной платформы, определяют ориентацию системы координат, связанной с гиростабилизированной платформой, относительно местной горизонтальной системы координат, связанной с Землей, вычисляют результат автономного определения азимута гиростабилизированной платформы αη, определяют астрономический азимут АКЭ контрольного элемента гиростабилизированной платформы, положение нормали к которому совпадает с нулевым отсчетом датчика угла φ, на момент окончания начальной выставки фиксируют угол φ гиростабилизированной платформы вокруг оси карданова подвеса и определяют погрешность гирокомпасирования ΔА: ΔА=αηКЭ-φ, считают выставку гиростабилизированной платформы прошедшей контроль, если погрешность гирокомпасирования не превышает допустимого значения. 3 ил.

Формула изобретения RU 2 541 152 C1

Способ контроля выставки гиростабилизированной платформы инерциальной системы, включающий начальную выставку, определение ориентации системы координат, связанной с гиростабилизированной платформой, относительно местной горизонтальной системы координат, связанной с Землей, вычисление результата автономного определения азимута гиростабилизированной платформы αη, отличающийся тем, что определяют астрономический азимут АКЭ контрольного элемента гиростабилизированной платформы, положение нормали к которому совпадает с нулевым отсчетом датчика угла φ, на момент окончания начальной выставки фиксируют угол φ гиростабилизированной платформы вокруг оси карданова подвеса и определяют погрешность гирокомпасирования ΔА:
ΔА=αηКЭ-φ,
считают выставку гиростабилизированной платформы прошедшей контроль, если погрешность гирокомпасирования не превышает допустимого значения.

Документы, цитированные в отчете о поиске Патент 2015 года RU2541152C1

Авиационные приборы и навигационные системы/ Под ред
О.А
БАБИЧА, издание ВВИА им
Н.Е
ЖУКОВСКОГО, 1981, стр.523-525
Инерциальная навигация/ Под ред
К.Ф.О ДОННЕЛА, М., издательство "Наука", 1969, стр.514
АВТОМАТИЗИРОВАННАЯ СИСТЕМА НАВИГАЦИИ И ТОПОПРИВЯЗКИ 2010
  • Громов Владимир Вячеславович
  • Егоров Виктор Юрьевич
  • Липсман Давид Лазорович
  • Мосалёв Сергей Михайлович
  • Рыбкин Игорь Семенович
  • Сдвижков Анатолий Иванович
  • Хитров Владимир Анатольевич
RU2439497C1
АЭРОГРАВИМЕТРИЧЕСКИЙ КОМПЛЕКС 1996
  • Поляков Лев Григорьевич
  • Чесноков Геннадий Иванович
  • Трубицын Геннадий Васильевич
  • Горчица Геннадий Иванович
RU2090911C1
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ АСТРОНОМИЧЕСКОГО АЗИМУТА 2007
  • Нарвер Валерий Наумович
  • Нарвер Вадим Валериевич
  • Патрушев Владимир Викторович
  • Приходько Вячеслав Данилович
RU2347252C1
СПОСОБ ГИРОКОМПАСИРОВАНИЯ С ПРИМЕНЕНИЕМ ГИРОСКОПИЧЕСКОГО ДАТЧИКА УГЛОВОЙ СКОРОСТИ И КОМБИНИРОВАННОЙ КОМПЕНСАЦИИ ЕГО ДРЕЙФА 2001
  • Редькин С.П.
RU2189564C1

RU 2 541 152 C1

Авторы

Чекалин Владимир Иванович

Казаков Игорь Дмитриевич

Даты

2015-02-10Публикация

2013-10-03Подача