СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА ПСЕВДОСПЛАВА Российский патент 2015 года по МПК B22F3/12 C22C1/04 

Описание патента на изобретение RU2556154C1

Изобретение относится к порошковой металлургии, а именно к получению композиционных материалов псевдосплавов, в частности псевдосплавов молибден-медь, молибден-медь-никель, вольфрам-медь.

Композиционные материалы псевдосплавов (далее псевдосплавы), благодаря сочетанию физико-механических свойств составляющих компонентов, обладают рядом комплексно-улучшенных характеристик - высокими электропроводностью и теплопроводностью, заданной плотностью, термическим коэффициентом линейного расширения (ТКЛР), хорошо согласующимся с ТКЛР других материалов и прежде всего с керамическими и полупроводниковыми материалами.

Это обеспечивает псевдосплавам широкое применение в различных областях техники и прежде всего в электронной технике СВЧ.

Известен способ изготовления спеченных пористых изделий из псевдосплава на основе вольфрама, включающий приготовление шихты состава вольфрам (W) 92,3 - никель (Ni) 1,3 - медь (Cu) 6,4 мас.% с добавлением порообразователя двууглекислого аммония, прессование, удаление порообразователя и жидкофазное спекание, в котором с целью повышения качества заготовки, а именно увеличения прочности, ликвидации трещинообразования в спеченных крупногабаритных заготовках за счет оптимизации технологических режимов изготовления, а именно - используют вольфрамовый порошок со средним размером частиц по Фишеру 0,8-3,9 мкм и - порообразователь дисперсностью менее 0,071 мм, прессование шихты производят давлением не более 150 МПа, а спекание проводят при температуре 1080-1300°С в течение 1-2 ч [1].

Данный способ обеспечивает получение псевдосплава с предусмотренной низкой плотностью.

Однако это затрудняет его использование в других случаях, например, в случае необходимости его электрохимической обработки, его использования в качестве подложек СВЧ-микросхем.

Известен способ получения облицовки для кумулятивного заряда из композиционного материала псевдосплава молибден-медь (Мо-Cu), включающий приготовление шихты путем перемешивания промышленных порошков Mo-Ni, прессование шихты с усилием не более 150 МПа, поэтапное спекание в среде водорода, в котором с целью получения композиционного материала псевдосплава Мо-Cu с относительной плотностью 99%, абсолютной разноплотностью А=0,18 г/см3, относительной разноплотностью - λ=1,83%, проводят первоначальный нагрев до температуры восстановительной выдержки не менее 800°С, выдержку при этой температуре не менее 1 ч, нагрев до окончательной температуры спекания со скоростью не более 10°С/мин, выдержку при этой температуре в течение не менее 0,5 ч и пропитку заготовки расплавом меди при температуре не менее 1250°С [2].

Данный способ обеспечивает получение псевдосплава Мо 61,4% - Cu 37,8% - Ni 0,8% с относительной плотностью 99%, что является высоким результатом.

Однако данный способ в силу наличия технологической добавки никеля не позволяет получать псевдосплавы с высокой электропроводностью и теплопроводностью.

Известен способ получения композиционного материала псевдосплава молибден-медного, включающий приготовление шихты путем размола и перемешивания промышленных порошков, прессование, спекание, в котором с целью получения материала с относительной плотностью не менее 98%, с низкой разноплотностью, спекание проводят поэтапно в среде водорода, первоначальный нагрев осуществляют до температуры восстановительной выдержки не менее 800°С, выдерживают при этой температуре не менее 1 ч и продолжают нагрев до окончательной температуры спекания со скоростью не более 10°С в минуту и выдерживают при этой температуре в течение не менее 0,5 ч, причем приготовление шихты осуществляют в высокоэнергетической шаровой планетарной мельнице, обеспечивающей центростремительное ускорение мелющих тел не менее 40 g, в течение не менее 10 мин, прессование производят усилием не более 150 МПа [3].

Данный способ, как и предыдущий, обеспечивает получение псевдосплава с высокой относительной плотностью не менее 98%.

Недостатками данного способа получения псевдосплава являются:

во-первых, невысокая электропроводность псевдосплава из-за существенного загрязнения шихты металлических порошков материалом мелющих тел при центростремительном ускорении;

во-вторых, неэкологичность способа из-за значительного пылевыделения токсичных компонентов шихты;

в-третьих, отсутствие серийного промышленного оборудования.

Известен способ изготовления изделий на основе псевдосплавов вольфрам-медь или молибден-медь, включающий приготовление вольфрамовой или молибденовой шихты, прессование заготовок, спекание заготовок до получения вольфрамовых или молибденовых каркасов и пропитку спеченных каркасов медью, в котором с целью уменьшения вредного воздействия на окружающую среду технологического процесса изготовления изделий при одновременном улучшении качественных характеристик и снижения себестоимости изделий перед пропиткой каркасов их поверхность, за исключением участков, через которые производят пропитку медью, покрывают как минимум монослоем материала, устойчивого к температуре пропитки и не смачиваемого расплавленной медью [4] - прототип.

Недостатками данного способа получения псевдосплава, как и предыдущего, является

во-первых, не высокая электропроводность псевдосплава из-за:

а) неизбежного наличия в шихте металлических порошков остаточных количеств органического связующего - поливинилового спирта,

б) необходимость обработки поверхности заготовки псевдосплава перед спеканием графитосодержащими материалами,

во-вторых, высокая трудоемкость изготовления из-за наличия необходимых дополнительных операций (выжигание поливинилового спирта, фрезерования для удаления наплывов меди и остатков графитосодержащих материалов),

в-третьих, неэкологичность способа из-за значительного пылевыделения токсичных компонентов шихты,

в-четвертых, отсутствие серийного промышленного оборудования.

Техническим результатом изобретения является повышение электропроводности и теплопроводности материала псевдосплава путем повышения его однородности, снижение температурного коэффициента линейного расширения (ТКЛР), при сохранении его высокой предельной плотности, снижение себестоимости, повышение экологичности способа.

Данный технический результат достигается заявленным способом получения композиционного материала псевдосплава, включающим приготовление шихты металлических порошков заданного состава псевдосплава путем их перемешивания, последующее прессование упомянутой шихты, спекание заготовки псевдосплава в среде водорода в два этапа, при этом на первом этапе осуществляют нагрев до температуры не менее 800°С, на втором - до температуры спекания упомянутой шихты с выдержкой при этих температурах не менее 1 ч соответственно, в котором перед спеканием заготовки псевдосплава проводят ее отжиг в вакууме при давлении не более 1,33×10-2 Па, при температуре не ниже 300°С и не выше температуры плавления легкоплавкого компонента псевдосплава в течение не менее 1 ч,

а после спекания дополнительно проводят осевое прессование заготовки псевдосплава при снижении давления от 300 МПа до 80 МПа со скоростью не более 80 МПа/мин.

Композиционный материал псевдосплава представляет собой сплав молибден-медь, либо молибден-медь-никель либо вольфрам-медь.

Раскрытие сущности изобретения.

Совокупность существенных признаков заявленного способа получения композиционного материала псевдосплава, а именно:

проведение перед спеканием заготовки отжига в вакууме при давлении не более 1,3 3×10-2 Па, при температуре не ниже 300°С и не выше температуры плавления легкоплавкого компонента псевдосплава в течение не менее 1 ч обеспечивает эффективную дегазацию материала заготовки и тем самым повышение газопроницаемости для водорода при спекании, и тем самым - повышение смачиваемости молибденовых частиц медью равномерно по всему объему заготовки, и тем самым повышение однородности материала псевдосплава и, как следствие, - повышение электропроводности, теплопроводности при сохранении его высокой предельной плотности.

Дополнительное осевое прессование заготовки при снижении давления от 300 МПа до 80 МПа со скоростью не более 80 МПа/мин в совокупности с высокой пластичностью медной матрицы псевдосплава, полученной в процессе предыдущей технологической операции (спекании), обеспечивает сохранение предельной плотности и целостности материала псевдосплава и практически полное отсутствие внутренних напряжений и, как следствие, - повышение его однородности и соответственно повышение электропроводности и теплопроводности материала псевдосплава, снижение температурного коэффициента линейного расширения (ТКЛР).

Наличие иных технологических операции (отжиг и осевое прессование), иная последовательность их проведения обеспечивают относительно способа прототипа исключение ряда технологических операций, таких как пропитка молибденовых каркасов медью, механическая обработка поверхности материала псевдосплава и тем самым обеспечивает повышение однородности материала псевдосплава по химическому его составу и, как следствие этого:

во-первых, повышение электропроводности и теплопроводности, снижение температурного коэффициента линейного расширения (ТКЛР)

при сохранении его высокой предельной плотности;

во-вторых, снижение себестоимости;

в-третьих, повышение экологичности способа благодаря возможности исключения технологических операций, вызывающих значительное пылевыделение.

Примеры конкретного выполнения заявленного способа получения композиционного материала псевдосплава.

Пример 1.

Приготавливают шихту металлических порошков заданного состава псевдосплава молибден-медь (50 и 50), мас.% соответственно путем их перемешивания в вибросмесителе (СКБ В НИИНСМ).

Далее проводят прессование шихты на гидравлическом прессе (DWM) давлением 100 МПа.

Далее проводят отжиг заготовки псевдосплава в вакуумной печи (СНВЭ) при давлении 1,33×10-2 Па, при температуре 300°С, в течение 1 ч.

Далее проводят спекание заготовки псевдосплава в муфельной проточно-водородной печи (СТН) в два этапа, при этом на первом этапе осуществляют нагрев до температуры 960°С, на втором - 1100°С (что соответствует температуре спекания шихты указанного состава (молибден-медь) с выдержкой при этих температурах в течение 1 ч и 2 ч соответственно.

Далее после спекания дополнительно проводят осевое прессование с использованием гидравлического пресса (DWM) при снижении давлении от 300 МПа до 80 МПа со скоростью 80 Мпа/мин и отжиг в водороде.

Примеры 2-5.

Аналогично примеру 1 получены образцы материала псевдосплава, но при других технологических режимах и/или для других его заданных составов.

Пример 6.

Образец материала псевдосплава получен согласно способу прототипа.

На изготовленных образцах были измерены:

- удельная электропроводность, (МСм/м),

- теплопроводность, (Вт/м×град),

- плотность, (г/см3),

- термический коэффициент линейного расширения, (град-1)

согласно КРПГ.28803.00033, КРПГ.28803.00034, КРПГ.25 803.00032 соответственно.

Рассчитана себестоимость, исходя из материалоемкости заданного изделия, например, теплоотводящего основания КРПГ. 741542.183 для изделий СВЧ техники.

Данные сведены в таблицу.

Как видно из таблицы, образцы материала псевдосплава, изготовленные согласно заявленному способу (примеры 1-5), имеют:

Удельную электропроводность

(37,4-37,7) МСм/м (50, вес.% медь и 50, вес.% молибден) (примеры 1-3),

27 МСм/м (25, вес.% медь и 75, вес.% молибден) (пример 4),

5,7 МСм/м (40, вес.% медь, 50, вес.% молибден, 10, вес.% никель) (пример 5).

Удельная электропроводность образца - прототипа - 30,7 МСм/м (50, вес.% медь и 50, вес.% молибден) (пример 6).

Теплопроводность - 285 Вт/м×град (50, вес.% медь и 50, вес.% молибден).

Теплопроводность прототипа - 200 Вт/м×град (50, вес.% медь и 50, вес.% молибден).

При этом предельная расчетная теплопроводность - 288 Вт/м×град (50, вес.% медь и 50, вес.% молибден).

Термический коэффициент линейного расширения (ТКЛР)

9,6×10-6 град-1 (50, вес.% медь и 50, вес.% молибден),

7,8×10-6 град-1 (25, вес.% медь и 75, вес.% молибден).

Термический коэффициент линейного расширения (ТКЛР) образца прототипа 12,2×10-6 град-1 (50, вес.% медь и 50, вес.% молибден).

Относительная плотность составляет:

99,7% (50, вес.% медь и 50, вес.% молибден),

27 МСм/м (25, вес.% медь и 75, вес.% молибден),

5,7 МСм/м (40, вес.% медь, 50, вес.% молибден, 10, вес.% никель).

Относительная плотность образца прототипа - 99,9%.

Таким образом, заявленный способ получения композиционного материала псевдосплава по сравнению с прототипом обеспечит:

повышение электропроводности примерно на 20%,

снижение температурного коэффициента линейного расширения (ТКЛР) более 20%,

при сохранении высокой относительной плотности псевдосплава примерно 99,7%.

снижение себестоимости примерно более 50%.

Кроме того, повышена экологичность способа получения.

Кроме того, использование псевдосплава, изготовленного заявленным способом обеспечит существенную экономию исходного сырья (псевдосплава), благодаря высокой однородности технических характеристик по образцу псевдосплава.

Образцы псевдосплава молибден-медь были опробованы для изготовления опытной партии теплоотводящих оснований для специальных изделий СВЧ электроники, последние показали увеличение выхода годных изделий примерно в два раза.

Источники информации

1. Патент РФ №2414329, МПК B22F 3/12, С22С 1/04, приоритет 02.09.09, опубл. 20.03.11.

2. Патент РФ №2337308, МПК С22С 1/04, B22F 3/12, приоритет 03.10.06, опубл. 27.10.08.

3. Патент РФ №2292988, МПК B22F 3/12, С22С 1/04, приоритет 05.07.05, опубл. 10.02.07.

4. Патент РФ №2460610, МПК B22F 3/12, С22С 1/04, приоритет 05.07.05, опубл. 10.02.07 - приоритет.

ТАБЛИЦА № примера п/п Состав шихты металлических порошков Технологический режим Результаты измерений Расход компонентов псевдосплава на изготовление основания КРПГ. 741542.183, грамм Отжиг перед спеканием заготовки Осевое прессование после спекания псевдосплава Удельная электропроводность МС м/м ТКЛР, ×10-6 град-1 Теплопроводность, Вт/м×град Относительная плотность, % Температура, °С Давление вакуумирования, Па Начальное давление, МПа Скорость снижения давления, МПа/мин 1 медь - 50 вес.% 300 1,33×10-2 300 80 37,7 9,6 285 99,7 33,3 молибден - 50 вес.% 2 медь - 50 вес.% 600 « « « 37,4 9,5 280 99,6 нет данных молибден - 50 вес.% 3 медь - 50 вес.% 900 « « « 37,6 9,6 282 99,7 нет данных молибден - 50 вес.% 4 медь - 25 вес.% « « « « 27,0 7,8 нет данных 99,4 нет данных молибден - 75 вес.% 5 медь- 40 вес.% молибден - 50 вес.% « « « « 5,7 нет данных нет данных 99,0 нет данных никель - 10 вес.% 6 медь - 50 вес.% Не проводился Не проводилось 30,7 12,2 200 99,9 53,0 Прототип молибден-50 вес.%

Похожие патенты RU2556154C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ОБЛИЦОВКИ ДЛЯ КУМУЛЯТИВНОГО ЗАРЯДА ИЗ КОМПОЗИЦИОННОГО ПСЕВДОСПЛАВА Mo-Cu 2006
  • Белов Владимир Юрьевич
  • Качалин Николай Иванович
  • Малинов Владимир Иванович
  • Тихий Григорий Андреевич
  • Свирский Олег Владиславович
  • Климов Станислав Алексеевич
  • Скляров Вадим Михайлович
RU2337308C2
СПОСОБ ПОЛУЧЕНИЯ МОЛИБДЕН-МЕДНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА 2005
  • Тихий Григорий Андреевич
  • Малинов Владимир Иванович
  • Качалин Николай Иванович
  • Белов Владимир Юрьевич
  • Куваев Михаил Дмитриевич
  • Никитин Владимир Иванович
RU2292988C1
СПОСОБ ИЗГОТОВЛЕНИЯ МАТЕРИАЛА С РЕГУЛИРУЕМЫМ ТЕПЛОВЫМ РАСШИРЕНИЕМ 1993
  • Козлова Р.Ф.
RU2038191C1
Материал для дугогасительных и разрывных электрических контактов на основе меди и способ его изготовления 2021
  • Концевой Юрий Васильевич
  • Мейлах Анна Григорьевна
  • Шубин Алексей Борисович
  • Гойда Эдуард Юрьевич
RU2769344C1
Способ изготовления бислойной порошковой полосы на основе меди для сильноточных разрывных электрических контактов 2021
  • Концевой Юрий Васильевич
  • Мейлах Анна Григорьевна
  • Шубин Алексей Борисович
RU2777829C1
СПОСОБ ИЗГОТОВЛЕНИЯ СПЕЧЕННЫХ ПОРИСТЫХ ИЗДЕЛИЙ ИЗ ПСЕВДОСПЛАВА НА ОСНОВЕ ВОЛЬФРАМА 2010
  • Белов Владимир Юрьевич
  • Баранов Глеб Викторович
  • Качалин Николай Иванович
  • Малинов Владимир Иванович
RU2444418C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ НА ОСНОВЕ ПСЕВДОСПЛАВОВ ВОЛЬФРАМ-МЕДЬ И МОЛИБДЕН-МЕДЬ 2011
  • Инюхин Михаил Валерьевич
  • Прасицкий Василий Витальевич
  • Хабибулин Рашид Исмаилович
RU2460610C1
СПОСОБ ИЗГОТОВЛЕНИЯ СПЕЧЕННЫХ ПОРИСТЫХ ИЗДЕЛИЙ ИЗ ПСЕВДОСПЛАВА НА ОСНОВЕ ВОЛЬФРАМА 2009
  • Белов Владимир Юрьевич
  • Баранов Глеб Викторович
  • Качалин Николай Иванович
  • Малинов Владимир Иванович
RU2414329C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОРОШКОВОГО КОМПОЗИТА Сu-Cd/Nb ДЛЯ ЭЛЕКТРОКОНТАКТНОГО ПРИМЕНЕНИЯ 2013
  • Иванов Виктор Владимирович
  • Шао Венжу
  • Алещенко Вадим Иванович
  • Шубин Александр Анатольевич
RU2516236C1
СПОСОБ ИЗГОТОВЛЕНИЯ СПЕЧЕННЫХ ПОРИСТЫХ ИЗДЕЛИЙ ИЗ ПСЕВДОСПЛАВА НА ОСНОВЕ ВОЛЬФРАМА 2016
  • Качалин Николай Иванович
  • Белов Владимир Юрьевич
  • Баранов Глеб Викторович
RU2623566C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА ПСЕВДОСПЛАВА

Заявленное изобретение относится к порошковой металлургии. Готовят шихту из металлических компонентов заданного состава псевдосплава путем их перемешивания, полученную шихту прессуют. Проводят отжиг заготовки в вакууме при давлении не более 1,33×10-2 Па, при температуре не ниже 300°С и не выше температуры плавления легкоплавкого компонента псевдосплава в течение не менее 1 ч. Спекают заготовку псевдосплава в среде водорода в два этапа. На первом этапе осуществляют нагрев до температуры не менее 800°С, на втором - до температуры спекания упомянутой шихты с выдержкой при этих температурах не менее 1 ч соответственно. После спекания дополнительно проводят осевое прессование заготовки псевдосплава при снижении давления от 300 МПа до 80 МПа со скоростью не более 80 МПа/мин. Обеспечивается повышение электропроводности и теплопроводности композиционного материала за счет повышения его однородности и снижения температурного коэффициента линейного расширения при сохранении высокой предельной плотности. 1 з.п. ф-лы, 1 табл., 6 пр.

Формула изобретения RU 2 556 154 C1

1. Способ получения композиционного материала псевдосплава, включающий приготовление шихты из металлических компонентов заданного состава псевдосплава путем их перемешивания, последующее прессование упомянутой шихты, спекание заготовки псевдосплава в среде водорода в два этапа, на первом этапе осуществляют нагрев до температуры не менее 800°С, на втором - до температуры спекания упомянутой шихты с выдержкой при этих температурах не менее 1 ч соответственно, отличающийся тем, что перед спеканием заготовки псевдосплава проводят ее отжиг в вакууме при давлении не более 1,33×10-2 Па, при температуре не ниже 300°С и не выше температуры плавления легкоплавкого компонента псевдосплава, в течение не менее 1 ч, а после спекания дополнительно проводят осевое прессование заготовки псевдосплава при снижении давления от 300 МПа до 80 МПа со скоростью не более 80 МПа/мин.

2. Способ по п.1, отличающийся тем, что псевдосплав представляет собой, например, сплав молибден-медь либо молибден-медь-никель, либо вольфрам-медь.

Документы, цитированные в отчете о поиске Патент 2015 года RU2556154C1

СПОСОБ ПОЛУЧЕНИЯ МОЛИБДЕН-МЕДНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА 2005
  • Тихий Григорий Андреевич
  • Малинов Владимир Иванович
  • Качалин Николай Иванович
  • Белов Владимир Юрьевич
  • Куваев Михаил Дмитриевич
  • Никитин Владимир Иванович
RU2292988C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ НА ОСНОВЕ ПСЕВДОСПЛАВОВ ВОЛЬФРАМ-МЕДЬ И МОЛИБДЕН-МЕДЬ 2011
  • Инюхин Михаил Валерьевич
  • Прасицкий Василий Витальевич
  • Хабибулин Рашид Исмаилович
RU2460610C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ НА ОСНОВЕ ПСЕВДОСПЛАВА ВОЛЬФРАМ-МЕДЬ 2003
  • Шевченко А.С.
  • Николаев Ю.В.
  • Выбыванец В.И.
  • Лебедев А.М.
  • Мухортов А.П.
RU2243855C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ ТУГОПЛАВКИХ МАТЕРИАЛОВ И МЕДИ 1989
  • Пономарев В.А.
  • Завитневич В.П.
  • Бринза В.Н.
  • Шмелев Л.С.
SU1615996A1
US 4710223 A1, 01.12.1987
US 6103392 A1, 15.08.2000

RU 2 556 154 C1

Авторы

Урсуляк Назар Дмитриевич

Налогин Алексей Григорьевич

Дровненкова Галина Васильевна

Хабачев Максим Николаевич

Даты

2015-07-10Публикация

2014-01-22Подача